日本研究人员发现持续产生抗体的长寿浆细胞

日本研究人员发现持续产生抗体的长寿浆细胞这张2020年4月1日拍摄的照片显示,科研人员在位于澳大利亚布里斯班的昆士兰大学实验室进行疫苗研制工作。(新华社发)浆细胞能在抗原刺激下分泌特异性免疫球蛋白,即抗体,并释放入血液中。日本大阪大学发布的新闻公报说,医学界一般认为,疫苗保护效果的持续时间长短有赖于浆细胞的寿命。但是此前医学界一直没有追踪浆细胞生存状态的方法,因此人们对长寿浆细胞的特征也几乎不掌握。日本大阪大学等机构的研究人员开发出了能用荧光色素标记实验鼠浆细胞的实验系统,并使用这一系统追踪实验鼠浆细胞的生存状态,时间长达一年。他们发现,刚诞生的浆细胞中,大部分会较快死亡,而少部分浆细胞会转化性状,静静地在骨髓中生存,成为长寿浆细胞。公报说,本项研究使分离长寿浆细胞并详细探明其诱导机制成为可能,以此成果为基础,可望通过高效诱导长寿浆细胞研发出效果更持久的疫苗。相关研究成果已发表在美国《实验医学杂志》网站上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335643.htm手机版:https://m.cnbeta.com.tw/view/1335643.htm

相关推荐

封面图片

雪松-西奈研究人员发现COVID-19疫苗产生的抗体持续时间远比预期的长

雪松-西奈研究人员发现COVID-19疫苗产生的抗体持续时间远比预期的长研究表明,免疫系统功能紊乱可能导致长病程COVID-19。该研究发现,长COVID-19患者在接种疫苗后很长一段时间内产生了针对该病毒的抗体,其中核苷酸抗体的水平特别高。这种持续的免疫反应的影响仍不清楚,研究人员现在正在寻求一个明确的生物标志物来诊断和了解长COVID-19。雪松-西奈医院COVID-19康复项目的联合主任、该研究的资深作者凯瑟琳-勒博士说:"人们普遍认为Long-COVID-19会发生某种程度的异常免疫反应,而这项研究增加了证据,表明这是真的。"Long-COVID是指人们在最初感染导致COVID-19的病毒三个月或更长时间后出现与COVID-19有关的症状,估计全世界有6500万人受到影响。常见的症状包括疲劳、呼吸急促和认知功能障碍,如混乱和健忘。一些症状可能会产生衰弱的影响。为了研究Long-COVID-19患者的免疫反应,研究人员分析了245名被诊断为Long-COVID-19的人和86名患有COVID-19并完全康复的人的血样。所有的研究参与者都接受了一或两剂COVID-19疫苗方案。凯瑟琳-勒解释说:"我们研究了免疫系统反应的一个部分,即抗体的产生,它是由称为B细胞的免疫细胞介导的。"具体来说,调查人员研究了两种攻击导致COVID-19的病毒的抗体。其中一种被称为尖峰蛋白抗体,它攻击病毒外部的一种蛋白质。另一种是核衣壳抗体,它攻击病毒中允许其复制的部分。调查人员发现,被诊断为Long-COVID-19的人比没有Long-COVID-19的人产生更高水平的尖峰蛋白和核壳抗体。在接受一剂COVID-19疫苗的八周后,没有Long-COVID-19的人的抗体水平开始下降,这是预料之中的事。然而,患有Long-COVID-19的人的抗体水平继续升高,特别是核苷酸抗体。苏珊-程(SusanCheng)说,"在接种COVID-19疫苗后,人们所期待的是你的穗状蛋白抗体水平的跃升,但不会期待核衣壳抗体水平的显著增加,你也会期望这些水平最终会下降,而不是在接种疫苗后持续这么久。"她是ErikaJ.Glazer妇女心血管健康和人口科学主席、Smidt心脏研究所心脏病学部健康老化研究所主任,也是该研究的资深作者。尽管这项研究显示Long-COVID-19会影响免疫系统,但据该研究的作者说,现在从这些发现中得出确定的结论还为时过早。"理论上讲,这些抗体的产生可能意味着人们更容易受到感染,"凯瑟琳-勒说。"我们还需要调查免疫反应的升高是否与COVID-19的长期症状的严重程度或数量相关联"。调查人员正在继续研究Long-COVID-19患者的血样。他们希望能确定一种可测量的分子,可用于诊断Long-COVID,并更好地了解导致它的生物过程。...PC版:https://www.cnbeta.com.tw/articles/soft/1357059.htm手机版:https://m.cnbeta.com.tw/view/1357059.htm

封面图片

研究人员发现针对乙型流感的强效单克隆抗体

研究人员发现针对乙型流感的强效单克隆抗体范德比尔特大学的研究人员发现了针对乙型流感(尤其是FluB-400)的强效单克隆抗体,为预防和治疗这种病毒提供了一种新方法。这一进展还可能有助于研制通用流感疫苗。三维效果图显示,其中一种分离出来的抗体FluB-393(蓝色)与乙型流感病毒的神经氨酸酶表面糖蛋白(红色)结合,可预防感染。图片来源:EladBinshtein博士和AnthonyCzelusniak插图季节性流感疫苗包括乙型流感和更常见的甲型流感,但不能激发针对这两种病毒的最广泛的免疫反应。此外,免疫系统因年龄或疾病而减弱的人可能无法对流感疫苗产生有效反应。阻断神经氨酸酶(流感病毒的一种主要表面糖蛋白)的小分子药物有助于治疗早期感染,但在感染较为严重时,这些药物的疗效有限,而且通常对治疗乙型流感感染的效果较差。因此,我们需要另一种方法来对付这种病毒。单克隆抗体方面的突破在《免疫》(Immunity)杂志上,弗吉尼亚大学医学院的研究人员描述了他们是如何从以前接种过流感疫苗的人的骨髓中分离出两组单克隆抗体的,这两组抗体与乙型流感表面神经氨酸酶糖蛋白的不同部分结合。其中一种名为FluB-400的抗体能广泛抑制病毒在实验室培养的人类呼吸道上皮细胞中的复制。通过注射或鼻孔给药,它还能在动物模型中抵御乙型流感。研究人员认为,鼻腔内注射抗体可能比静脉注射或肌肉注射等更常见的途径更有效,而且全身副作用更小,部分原因是鼻腔内抗体可能会将病毒"困"在鼻腔粘液中,从而防止下层上皮表面受到感染。他们说,这些研究结果支持开发用于预防和治疗乙型流感的FluB-400,并将有助于指导开发通用流感疫苗的工作。"抗体日益成为预防或治疗病毒感染的一种有趣的医学工具,"论文通讯作者、医学博士小詹姆斯-克罗(JamesCroweJr.)说。"我们开始寻找乙型流感病毒的抗体,它仍然是一个医学难题,我们很高兴在寻找过程中发现了这种特别强大的分子"。克罗是大学特聘儿科教授和范德比尔特疫苗中心主任,该中心已分离出针对包括COVID-19在内的多种病毒感染的单克隆抗体。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433819.htm手机版:https://m.cnbeta.com.tw/view/1433819.htm

封面图片

研究人员发现对所有治疗性抗体有抗性的新冠病毒亚变体

研究人员发现对所有治疗性抗体有抗性的新冠病毒亚变体感染SARS冠状病毒-2(SARS-CoV-2)或接种COVID-19疫苗后会引发免疫反应,从而产生中和抗体,帮助预防SARS-CoV-2的(再次)感染或疾病的严重过程。通过附着在病毒的穗状蛋白上,中和抗体提供保护并阻止病毒进入细胞。Omicron亚型BA.1、BA.4、BA.5以及Q.1.1在尖峰蛋白上有大量的突变。其中一些突变是逃逸突变,使病毒能够逃避抗体的中和。此外,对生物技术生产的抗体的抗性也在发展,这些抗体是作为预防措施或作为对已确诊的SARS-CoV-2感染的治疗而给高风险患者使用的。Omicron亚系BQ.1.1是第一个对目前由EMA(欧洲药品管理局)和/或FDA(美国食品和药物管理局)批准的所有抗体疗法具有抗性的变体。然而,某些SARS-CoV-2变体,特别是Omicron变体,由于尖峰蛋白的突变,避免了中和抗体,甚至在接种疫苗或康复期的个人中引起有症状的感染。这被称为免疫规避,它对高风险人群构成了危险,包括老年人和免疫系统较弱的人,或者由于疾病或药物治疗所导致。他们往往不能产生足以保护自己免受严重疾病的免疫反应,即使在全面接种疫苗后也是如此。为了保护高风险患者,在确认SARS-CoV-2感染后,以生物技术生产的抗体作为预防措施或作为早期治疗。不同SARS-CoV-2变体的尖峰蛋白的突变赋予了对个别抗体疗法的抗性。因此,定期监测治疗性抗体是否对目前流通的病毒变体继续有效是很重要的。来自德国灵长类动物中心-莱布尼茨灵长类动物研究所感染生物学组和弗里德里希-亚历山大-纽伦堡大学分子免疫学部的一个研究小组调查了已获批准的抗体疗法对目前流通的Omicron亚变体的抑制效率。研究人员发现,在全球范围内正在上升的Omicron亚变体BQ.1.1对所有可用的抗体疗法都有抵抗力。"在我们的研究中,我们将携带选定病毒变体的穗状蛋白的非传播性病毒颗粒与不同稀释度的待测抗体混合,随后测量抑制细胞培养物感染所需的抗体量。"该研究的主要作者PhernaArora解释说:"我们总共测试了12种单独的抗体,其中6种在欧洲被批准用于临床,还有4种抗体鸡尾酒抗体组合。"研究人员发现,Omicron亚变体BQ.1.1既不能被单个抗体也不能被抗体鸡尾酒中和。相比之下,目前占主导地位的Omicron亚变体BA.5仍能被一种获批的抗体和两种获批的抗体鸡尾酒中和。"考虑到高风险患者,我们非常关注Omicron亚变体BQ.1.1对所有获批抗体疗法的耐药性。特别是在BQ.1.1广泛存在的地区,医生在治疗受感染的高危患者时不应该仅仅依靠抗体疗法,还应该考虑使用其他药物,如帕克洛韦或莫努匹韦,"研究负责人MarkusHoffmann对该研究结果评论道。发现Omicron亚变体BQ.1.1已经对一种即将在美国获批的新抗体疗法产生耐药性,这突出了开发针对COVID-19的新抗体疗法的重要性。"SARS-CoV-2变体的抗体耐药性的不断发展要求开发新的抗体疗法,专门针对目前流通的和未来的病毒变体。"德国灵长类动物中心-莱布尼茨灵长类动物研究所感染生物学组组长StefanPöhlmann总结说:"理想情况下,它们应该针对尖峰蛋白中几乎没有可能发生逃逸突变的区域。"...PC版:https://www.cnbeta.com.tw/articles/soft/1335803.htm手机版:https://m.cnbeta.com.tw/view/1335803.htm

封面图片

研究人员首次发现癌细胞抵抗化疗的机制

研究人员首次发现癌细胞抵抗化疗的机制研究人员首次观察到癌细胞如何通过破坏微管(绿色)来抵抗旨在阻止细胞分裂的化疗。但癌细胞非常狡猾,它们已经开发出了确保治疗并非总是有效的方法。现在,新南威尔士大学悉尼分校的研究人员首次观察到了癌细胞抵抗化疗效果的一种机制。该研究的通讯作者彼得-冈宁(PeterGunning)说:"抗微管化疗通常会将机械臂分解成多个枢纽,将染色体拉向多个方向,而不是正常的两个方向。由此产生的混乱阻碍了染色体向两个子细胞的正常分离,并诱导细胞凋亡或程序性细胞死亡"。研究人员发现,癌细胞利用一种巧妙的技术继续分裂,从而避免了化疗的影响。冈宁说:"我们发现,癌细胞利用细胞边缘(称为细胞皮质)提供的机械力来克服常用化疗的影响,因为化疗会阻碍细胞在分裂过程中分离染色体的能力。"当微管发生断裂时,癌细胞会激活一个信号,使"臂"伸向细胞边缘,拉动细胞皮层,使断裂的微管重新组合在一起。这使得臂能够稳定下来,并产生必要的力量,以物理方式抓住染色体并将其拉入每个子细胞,确保癌细胞的繁殖。研究人员在注意到一种用于治疗神经母细胞瘤(一种儿童癌症)的特定微管靶向药物增强了化疗效果后,怀疑这种机制的存在。但是,在他们之前的研究中,成像技术还不够先进,无法证实他们的猜测。"我们需要对癌细胞进行细胞分裂时的良好成像,以便实时观察染色体、微管和细胞结构发生了什么变化,"冈宁说。"这让我们相当惊讶,因为我们没想到癌细胞的这种机制会以这种方式被用来克服癌症疗法,但我们可以看到它在我们眼前发生。"大剂量化疗通常能有效阻止癌细胞分裂。然而,在剂量较低的情况下--比如说,当病人出现化疗毒性而需要减少剂量时,细胞就可以利用这种天生的生存机制,研究人员认为这是细胞生物学的一个基本组成部分。冈宁说:"我们认为这是一种后备机制,它的进化使任何细胞都能克服少量的微管破坏,并确保其能够存活。恰巧癌细胞利用它避开了抗微管化疗"。研究人员正致力于开发与当前化疗药物联合使用的药物,以关闭抗药性机制。"通过攻击癌细胞建立的力量生成机制,我们希望能够让癌症疗法更有效地发挥作用,"冈宁说。"实际上,我们已经成立了一家公司,能够开发出攻击这种救援机制所需的药物,使抗微管化疗能够更有效地发挥作用,并有望改善患者的预后。"这项研究发表在《当代生物学》(CurrentBiology)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391933.htm手机版:https://m.cnbeta.com.tw/view/1391933.htm

封面图片

新研究揭示了接种疫苗后免疫细胞发生的变化

新研究揭示了接种疫苗后免疫细胞发生的变化我们血液中作为屏障的抗体是由"长寿的浆细胞"制造的。虽然这些细胞的意义早已被了解,但它们在接种疫苗后如何以及何时产生仍是一个谜。直到现在,由莫纳什大学免疫学记忆实验室的马库斯-罗宾逊博士和大卫-塔林顿教授领导的研究小组已经实时显示了免疫记忆细胞是如何在接种疫苗后的几周内以每小时约一个细胞的速度储存在骨髓中。该研究结果最近发表在《科学免疫学》杂志上。研究人员利用小鼠的一个遗传系统绘制了这些细胞的逐渐积累图。这个系统被称为"时间标记",它使研究人员能够在免疫接种后的特定时间对所有存在的浆细胞进行不可磨灭的标记,然后在稍后返回,以确定那些存活下来的、因此是长寿的浆细胞。通过在接种疫苗后定期重复这一过程,研究人员能够揭示这些长寿细胞的积累历史,准确地指出它们是何时产生的,以及它们去了哪里。接种疫苗后,我们在很大程度上对该疾病保持免疫力,因为我们的身体不断提供针对免疫疾病的抗体--本质上是确保我们保持这些抗体的充足。虽然我们已经知道这些长寿的浆细胞在体内产生的部位,包括淋巴结、扁桃体和肠道--但究竟是什么让一些疫苗导致这些细胞坚持了几十年,而那些在几个月后就消失的细胞却一直不为人知。鉴于全球对COVID-19疫苗所提供的长期免疫力的关注,了解这一过程的紧迫性增加了。科学家使用一种小鼠模型,只在专门产生针对特定疫苗的抗体的细胞中表达一种荧光蛋白(称为TdTomato蛋白)。由于这些细胞会发出荧光,因此有可能追踪单个细胞的生产过程和它们的储存地点。该研究使用了一系列的工具,只识别那些由疫苗产生的浆细胞。小鼠模型中的所有浆细胞都表达了一种荧光蛋白(称为TdTomato蛋白),在这些细胞中,他们确定了那些识别疫苗的细胞,最后,通过使用时间戳,他们知道这些细胞是什么时候产生的,从而知道它们有多大年龄。据塔林顿教授说,研究这些单个细胞的诞生、成熟和得到储存以保护我们免受特定病毒或细菌的重复入侵,"可以让我们了解长寿浆细胞的招募是如何发生的"。这项研究的复杂性使研究人员能够确定建立特定免疫力的其他方面。这些浆细胞如何进入骨髓这些浆细胞被储存在骨髓等区域时是否必须取代其他细胞或者这些细胞是否"找到"了因之前的浆细胞死亡或转移到其他地方而空出的位置?对这些细胞的绘图显示,小鼠的一次特定疫苗接种导致骨髓中产生了大约4万个持续存在的浆细胞。这些细胞在最初的繁荣之后,以每天约0.1%的速度下降,半衰期约为700天,既提供了对保护期限的估计,也为进一步研究长寿细胞本身提供了依据。据塔林顿教授说,了解这些长寿浆细胞是如何产生、存活和死亡的,"将为我们通过不同的疫苗组合或传递策略调节它们的能力提供信息--最终使我们能够增加免疫的寿命。"事实上,《自然》杂志最近报道了一项令人兴奋的工作,描述了改变疫苗接种的机制如何能够极大地影响免疫反应的特征,我们会预测这些特殊细胞的产生,而这些细胞是我们工作的重点。"...PC版:https://www.cnbeta.com.tw/articles/soft/1335995.htm手机版:https://m.cnbeta.com.tw/view/1335995.htm

封面图片

研究人员发现细胞中与细菌秘密交流的“间谍”

研究人员发现细胞中与细菌秘密交流的“间谍”康涅狄格大学的研究人员在《自然-细胞生物学》(NatureCellBiology)杂志上报告说,人体细胞产生的信使气泡可以拾取细菌产物并将其传递给其他细胞。这一发现可以解释细菌(无论是友好细菌还是传染性细菌)影响人类健康的一个关键机制。细胞外囊泡(EVs)就像我们细胞的邮政服务。细胞产生的EV是一种微小的气泡,它有一层由称为脂质的脂肪物质制成的防水外壳,并将其送入血液中。当另一个细胞遇到EV时,就会把它带入体内并打开。EV内通常有一些分子,它们是接收细胞行为或生长的信息来源。现在,康涅狄格大学医学院免疫学家普贾-库马里(PujaKumari)、维杰-拉西纳姆(VijayRathinam)及其同事报告说,EV还能做一些完全出乎意料的事情。EV的壁可以吸附细菌的碎片,细菌通常有一个脂质部分,很容易滑入EV的脂质壁。然后,无论哪个人体细胞抓住了EV,EV都会将细菌产物和其他内容物一起带入人体细胞。拉西纳姆实验室的博士后研究员库马里说:"我们发现,EV会在血液循环中巡视系统性微生物产物,并向细胞内的免疫监视网络发出警报。"这解开了一个长期存在的谜团。研究人员知道,我们的细胞内有能检测细菌产物的受体。但他们不知道这些细菌产物究竟是如何进入细胞的。免疫学系副教授拉西纳姆说:"我们了解了哪些微生物产物进入血液循环。这些产物可能来自入侵的传染性细菌,也可能来自友好细菌,例如生活在我们肠道中的细菌。当细胞内的受体检测到它们时,细菌发出的信号可以帮助肠道、免疫系统甚至大脑正常运作。或者,它们会导致细胞自爆并引发炎症,这取决于细菌的类型和所涉及的产品。但我们不知道有害或友好细菌进入血液的微生物产物是如何从细胞外进入细胞内的。"为了证明电动体确实在运输细菌碎片并将它们带入细胞,库马里、拉西纳姆和他们的同事做了一系列实验。首先,他们向小鼠体内注射了由细菌产生的绿色标记LPS。大约一小时后,他们在小鼠的血液中发现了EVs上的绿色LPS。其次,当他们把这些带有绿色LPS的EV转移到另一组小鼠体内时,他们在受体小鼠的细胞内发现了绿色LPS,从而引发了炎症。虽然他们还没有尝试用LPS以外的微生物产物进行实验,但他们怀疑也会发生类似的情况。"我们认为这在正常生理和感染中都有作用。肠道微生物群的微生物产物被释放到血液循环中,对人体非常重要。EVs可能在其中发挥着有益的作用,"拉西纳姆说。参考文献:"HostextracellularvesiclesconfercytosolicaccesstosystemicLPSlicensingnon-canonicalinflammasomesensingandpyroptosis"byPujaKumari,SwathyO.Vasudevan,AshleyJ.Russo,SkylarS.Wright,VíctorFrailee,Rathinam.Wright、VíctorFraile-Ágreda、DylanKrajewski、EvanR.Jellison、IgnacioRubio、MichaelBauer、AtsushiShimoyama、KoichiFukase、YuanpengZhang、JoelS.Pachter、SivapriyaKailasanVanaja和VijayA.Rathinam,2023年11月16日,《自然-细胞生物学》。DOI:10.1038/s41556-023-01269-8编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1402737.htm手机版:https://m.cnbeta.com.tw/view/1402737.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人