科学家研制出一劳永逸的病毒疫苗 不再需要无穷无尽的加强针

科学家研制出一劳永逸的病毒疫苗不再需要无穷无尽的加强针这种新策略无需制作所有这些不同的疫苗,因为它针对的是病毒基因组的一部分,而这一部分是所有病毒株所共有的。今天发表在《美国国家科学院院刊》上的一篇论文介绍了这种疫苗、它的工作原理以及它在小鼠身上的疗效。UCR病毒学家兼论文作者荣海i说:"关于这种疫苗策略,我想强调的是它的广泛性。它广泛适用于任何数量的病毒,对病毒的任何变种都广泛有效,而且对广泛的人群都是安全的。这可能就是我们一直在寻找的通用疫苗。"新的疫苗策略可能意味着对大多数病毒一劳永逸,而不是每年针对不同病毒株进行无休止的加强针注射。图片来源:AleyaSpielman/加州大学洛杉矶分校健康中心传统上,疫苗含有死病毒或经过改良的活病毒。人体的免疫系统会识别病毒中的一种蛋白质,并产生免疫反应。这种反应会产生攻击病毒的T细胞,阻止病毒传播。它还会产生"记忆"B细胞,训练免疫系统保护您免受未来的攻击。新疫苗也使用一种活的改良病毒。不过,它并不依赖于接种者体内具有这种传统的免疫反应或免疫活性蛋白--这也是免疫系统发育不全的婴儿或免疫系统负担过重的疾病患者可以使用这种疫苗的原因。取而代之的是,它依赖于小的沉默RNA分子。基于RNA的疫苗的机制和功效"宿主--人、小鼠、任何被感染的人都会产生小干扰RNA,作为对病毒感染的免疫反应。这些RNAi会击倒病毒,"论文第一作者、加州大学洛杉矶分校微生物学杰出教授丁守为说。"病毒之所以能成功致病,是因为它们能产生阻止宿主RNAi反应的蛋白质。如果我们制造一种突变病毒,使其不能产生抑制RNAi的蛋白质,我们就能削弱病毒。它可以复制到某种程度,但随后就会输给宿主的RNAi反应,"丁说。"以这种方式削弱的病毒可以用作疫苗,增强我们的RNAi免疫系统。"当研究人员用一种名为"Nodamura"的小鼠病毒对这一策略进行测试时,他们使用的是缺乏T细胞和B细胞的突变小鼠。他们发现,只需注射一次疫苗,小鼠就能在至少90天内免受致命剂量的未修改病毒的侵袭。一些研究表明,小鼠的九天大致相当于人类的一年。适合6个月以下婴儿使用的疫苗很少。然而,即使是新生小鼠也会产生小的RNAi分子,这就是为什么这种疫苗也能保护它们。加州大学河滨分校现已获得这项RNAi疫苗技术的美国专利。2013年,同一研究团队发表的一篇论文显示,流感感染也会诱导我们产生RNAi分子。"这就是为什么我们下一步要利用同样的概念生成流感疫苗,从而保护婴儿。如果我们成功了,他们就不必再依赖母亲的抗体了,"丁说。他们的流感疫苗也很可能以喷雾的形式提供,因为很多人对针头有反感。呼吸道感染是通过鼻子传播的,因此喷雾可能是一种更方便的接种方式。此外,研究人员表示,病毒变异以避开这种疫苗接种策略的可能性很小。"病毒可能会在传统疫苗未针对的区域发生变异。然而,我们正在用数千种小RNA针对它们的整个基因组。它们无法逃避。"最终,研究人员相信,他们可以"剪切和粘贴"这种策略,制造出适用于各种病毒的一次性疫苗。有几种众所周知的人类病原体:登革热、SARS、COVID-19,它们背后的病毒都具有类似的特性,新的疫苗同样也应该适用于这些病毒。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428077.htm手机版:https://m.cnbeta.com.tw/view/1428077.htm

相关推荐

封面图片

斯克里普斯研究所的科学家们率先研制出可对抗致命镇静剂的疫苗

斯克里普斯研究所的科学家们率先研制出可对抗致命镇静剂的疫苗斯克里普斯研究所的化学生物学家开发出了一种初步的"概念验证"疫苗,有可能为首次有效治疗人类服用过量甲苯噻嗪铺平道路。美国食品和药物管理局批准用于动物的镇静剂和镇痛剂甲苯噻嗪会对人体产生严重的副作用。最近,它被非法混入芬太尼、海洛因等阿片类药物以及可卡因中。这导致用药过量致死的人数大幅增加。现在,斯克里普斯研究所的化学生物学家开发出了一种疫苗,可以阻断甲苯噻嗪的毒性作用。最近发表在《化学通讯》(ChemicalCommunications)杂志上的一篇论文介绍了这种疫苗通过训练免疫系统来攻击这种药物。"我们能够证明,疫苗可以逆转啮齿动物中甲苯噻嗪过量的症状,"该研究的资深作者、斯克里普斯研究中心化学教授KimD.Janda博士说。"目前除了支持性护理之外,还没有治疗甲苯噻嗪中毒的方法,因此,我们相信我们的研究工作和我们提供的数据将为人类的有效治疗铺平道路。"甲苯噻嗪与芬太尼合用导致的致命药物过量迅速增加,促使白宫国家药物管制政策办公室宣布这种合用药物对美国构成新的威胁。甲苯噻嗪中毒的表现与阿片类药物过量类似,会导致呼吸和中枢神经系统抑制,并且会增强阿片类药物的效果。然而,通常用于逆转阿片类药物影响的纳洛酮并不能解决甲苯噻嗪的影响,这凸显了采取有效措施治疗甲苯噻嗪引起的急性中毒的必要性。研究人员怀疑,甲苯噻嗪是通过减少流向大脑和身体其他部位的血液而起作用的。这种药物还会导致皮肤损伤和伤口无法愈合,通常位于前臂和小腿,在某些情况下可能需要截肢,因此被称为"僵尸药"。虽然目前还没有治疗方法,但有针对性的疫苗或许能提供一种解决方案。疫苗会促使免疫系统产生抗体来抵御入侵者。抗体可以针对病毒、细菌和毒素。然而,有时分子太小,无法启动免疫反应,例如甲氧苄啶。因此,为了规避这个问题,研究人员利用扬达首创的设计原理创造了一种疫苗,该原理依赖于将药物分子(称为合剂)与较大的载体分子(蛋白质)和佐剂配对。在这项研究中,科学家们将一种甲苯噻嗪合剂与多种不同类型的蛋白质结合在一起,看看哪种组合能产生针对它的强大免疫反应。研究小组测试了三种疫苗配方(根据所涉及的蛋白质,分别称为TT、KLH和CRM197),观察哪种疫苗鸡尾酒能在啮齿动物受到甲苯噻嗪挑战后提供帮助。10分钟后,三种疫苗中的一种(TT)明显增加了注射了甲苯噻嗪的小鼠的运动能力,而三种疫苗中的两种(TT和KLH)则改善了呼吸。科学家们还研究了这些疫苗如何限制甲苯噻嗪的血脑屏障(BBB)渗透,这是一种仔细检查药物渗透的过滤机制。注射甲苯噻嗪后,它会立即进入大脑与受体结合。抗体通常无法通过血脑屏障;然而,三种疫苗中的两种(TT和KLH)显示出强大的能力,可以阻止甲苯噻嗪到达大脑中的受体,从而限制其有害影响。这项研究已经申请了临时专利。未来,他的团队将在这项工作的基础上创造出一种双功能抗体,可以同时逆转芬太尼和甲苯噻嗪的毒性,而纳洛酮却无法做到这一点。"单克隆抗体治疗可与疫苗同时使用,为阿片类药物使用障碍以及阿片类-甲苯噻嗪类药物过量提供直接和长期的保护,"Janda说。"这一策略可以对阿片类药物的流行产生重大影响"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432275.htm手机版:https://m.cnbeta.com.tw/view/1432275.htm

封面图片

科学家们开发出对所有20种已知亚型流感病毒均有效的mRNA疫苗

科学家们开发出对所有20种已知亚型流感病毒均有效的mRNA疫苗研究人员在今天发表在《科学》杂志上的一篇论文中描述了这种"多价"疫苗,它使用了辉瑞公司和Moderna公司SARS-CoV-2疫苗中使用的相同信使核糖核酸(mRNA)技术。实现这些COVID-19疫苗的这种mRNA技术是宾夕法尼亚大学的先驱。在动物模型中的测试表明,该疫苗极大地减少了疾病的迹象,并保护动物免于死亡,即使动物接触到与制作疫苗时不同的流感病毒株。该研究的高级作者、佩雷尔曼医学院微生物学教授ScottHensley博士说:"这里的想法是让人们对不同的流感菌株有一个基线水平的免疫记忆,这样,当下一次流感大流行发生时,疾病和死亡将大大减少。"Hensley和他的实验室与mRNA疫苗先驱德鲁·魏斯曼博士的实验室合作开展了这项研究,他是宾夕法尼亚州医学会罗伯茨家族疫苗研究教授和疫苗研究主任。流感病毒周期性地引起大流行,造成巨大的死亡人数。其中最著名的是1918-19年的"西班牙流感"大流行,它在全世界至少造成数千万人死亡。流感病毒可以在鸟类、猪和其他动物体内循环,当其中一个毒株跳到人类身上并获得变异,使其更适合在人类中传播时,大流行就会开始。目前的流感疫苗只是"季节性疫苗",可以防止最近流行的毒株,但不能防止新的、大流行的毒株。宾夕法尼亚大学医学院的研究人员采用的策略是使用免疫原--一种能刺激免疫反应的抗原--从所有已知的流感亚型中进行接种以引发广泛的免疫保护。预计该疫苗不会提供完全防止病毒感染的"消毒"免疫力。相反,新的研究显示,该疫苗会引起了一种记忆性免疫反应,可以迅速适应新的大流行病毒株,大大减少了感染引起的严重疾病和死亡。"这将与第一代SARS-CoV-2mRNA疫苗相媲美,后者针对冠状病毒的原始毒株,"Hensley说。"针对后来的变种,如Omicron,这些原始疫苗并没有完全阻断病毒感染,但它们继续提供持久的保护,防止严重疾病和死亡"。实验性疫苗在注射并被接受者的细胞吸收后,开始产生一种关键的流感病毒蛋白--血凝素蛋白的副本,用于所有20种流感血凝素亚型--H1至H18的甲型流感病毒,以及另外两种乙型流感病毒。Hensley说:"对于传统疫苗来说,对所有这些亚型进行免疫将是一个重大挑战,但使用mRNA技术则相对容易。"在小鼠身上,mRNA疫苗激发了高水平的抗体,这些抗体至少保持了四个月,并且对所有20种流感亚型都有强烈反应。此外,该疫苗似乎相对不受之前流感病毒接触的影响,而这可能会影响对传统流感疫苗的免疫反应。研究人员观察到,无论动物之前是否接触过流感病毒,小鼠的抗体反应都很强烈和广泛。Hensley和他的同事们目前正在设计人体临床试验,他说。研究人员设想,如果这些试验获得成功,该疫苗可能有助于激发所有年龄组的人(包括幼儿)对所有流感亚型的长期免疫记忆,这种疫苗可以大大减少感染严重流感的机会。原则上,同样的多价mRNA策略可以用于其他具有大流行潜力的病毒,包括冠状病毒。这项研究得到了美国国家过敏和传染病研究所的支持。...PC版:https://www.cnbeta.com.tw/articles/soft/1333757.htm手机版:https://m.cnbeta.com.tw/view/1333757.htm

封面图片

科学家解密艾滋病毒的防御系统 创新疫苗策略大有可为

科学家解密艾滋病毒的防御系统创新疫苗策略大有可为HIV-1病毒颗粒(粉红色/褐黄色)从慢性感染的H9细胞(茶色)的一个片段中萌发和复制的透射电子显微镜照片。颗粒处于不同的成熟阶段;弧形/半圆形是开始形成的不成熟颗粒,但仍是细胞的一部分。未成熟颗粒的形态会慢慢转变为成熟形态,并表现出典型的"圆锥形或球形核心"。图片拍摄于马里兰州德特里克堡的NIAID综合研究设施(IRF)。图片来源:NIAID艾滋病病毒的基因多种多样,因此难以用疫苗对其进行靶向治疗,但bNAbs可以克服这一障碍,因为它们能与病毒中即使发生变异也保持不变的部分结合。基因靶向是一种刺激免疫系统的方法,它能引导幼稚(前体)B细胞发育成能产生bNAbs的成熟B细胞。一类名为10E8的bNAbs是开发HIV疫苗的优先选择,因为它能中和特别广泛的HIV变种。10E8bNAb与艾滋病毒表面糖蛋白gp41的一个保守区域结合,该区域参与了艾滋病毒进入人类免疫细胞的过程。由于gp41的关键区域隐藏在HIV表面的凹陷缝隙中,因此设计一种免疫原--一种用于疫苗中、能引起特定免疫系统反应的分子--来刺激10E8bNAb的产生一直是一项挑战。之前的疫苗免疫原没有产生具有物理结构的bNAbs,无法到达gp41并与之结合。为了应对这一挑战,研究人员在纳米颗粒上设计了免疫原,模仿gp41的特定部分的外观。他们用这些免疫原为猕猴和小鼠接种疫苗,引起了10E8B细胞前体的特异性反应,诱导出的抗体显示出成熟为bNAbs的迹象,可以到达隐藏的gp41区域。当他们在小鼠体内使用mRNA编码的纳米颗粒时,也观察到了类似的反应。研究人员还发现,同样的免疫原产生的B细胞能成熟产生另一种名为LN01的gp41定向bNAb。最后,他们在实验室对人类血液样本进行分析后发现,10E8类bNAb前体自然存在于没有感染艾滋病病毒的人体内,而且他们的免疫原能与具有10E8类特征的人类幼稚B细胞结合并将其分离出来。这些观察结果表明,小鼠和猕猴的免疫数据很有希望转化为人类的免疫数据。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433325.htm手机版:https://m.cnbeta.com.tw/view/1433325.htm

封面图片

科学家们增强基于蛋白质的COVID-19疫苗的效果 将免疫反应提高25倍

科学家们增强基于蛋白质的COVID-19疫苗的效果将免疫反应提高25倍具有讽刺意味的是,一些疫苗需要自己的"助推器"。一种被称为佐剂的成分被添加到疫苗中,以帮助引起更强大的免疫反应,更好地训练身体来对抗病原体。科学家们报告说,与单独注射疫苗相比,一种物质能将小鼠对实验性COVID-19疫苗的免疫反应提高25倍。今天(2022年8月31日)发表在《ACS传染病》杂志上的一篇新论文描述了这项研究的细节。尽管在美国授权的第一批COVID-19疫苗应用了最先进的mRNA基因技术,但使用病原体的蛋白质这一久经考验的策略可以生产出制造成本更低、更容易储存的疫苗。到目前为止,美国食品和药物管理局(FDA)只批准了一种由Novavax生产的针对SARS-CoV-2的蛋白质疫苗。然而,许多目前可用的针对其他疾病的接种疫苗依赖于蛋白质或蛋白质的碎片,这些针剂含有佐剂以提高其有效性。科学家们已经发现,源自α-半乳糖甘油酰胺(αGC)的分子,一种来自海洋海绵的化合物可以充当佐剂。它们通过刺激一小部分免疫细胞群来发挥作用,这些免疫细胞对防御身体的病毒感染非常重要。RuiLuo、ZhengLiu和他们的同事已经设计出一种αGC的版本,以显著提高基于蛋白质的COVID-19疫苗所引起的免疫反应。该小组制作了四种αGC的类似物。他们将每一种加入到含有SARS-CoV-2尖峰蛋白的实验性疫苗中,该病毒利用尖峰蛋白来感染细胞。小鼠在29天内被注射了三次,研究人员跟踪了它们的免疫反应,直到第35天。为了测量佐剂的效果,科学家们仔细研究了免疫功能的各个方面,包括免疫系统消除病原体的两种方式:通过T细胞(直接杀死患病细胞)和抗体(抓住入侵微生物的免疫蛋白)。这四种物质都没有提高T细胞的反应,但它们都让免疫系统产生了干扰病毒的能力大得多的抗体。被称为αGC-CPOEt的类似物质催生了具有最大中和能力的抗体--比没有佐剂的疫苗所能引起的抗体大25倍。据研究人员称,这些结果表明,αGC-CPOEt值得进一步研究,作为一种潜在的佐剂来对抗COVID-19和其他传染病。PC版:https://www.cnbeta.com/articles/soft/1310917.htm手机版:https://m.cnbeta.com/view/1310917.htm

封面图片

科学家发现古老的抗癌机制:DISE

科学家发现古老的抗癌机制:DISE尽管癌症治疗取得了重大进展,但癌症仍然是全球死亡的主要原因之一。这种全身性疾病从细胞水平开始,无论年龄大小,都会影响个体。单细胞一旦获得突变,就会经历一种称为肿瘤转化的转化。细胞分裂是突变积累的最大风险因素,这解释了为什么所有大约20亿年前进化的多细胞生物都容易患癌症。鉴于最近通过免疫检查点阻断疗法在癌症治疗方面取得的成就,多细胞生物可能已经发展出免疫系统作为根除癌细胞的机制。“然而,免疫系统的出现相对较晚,约5亿年前。”此外,研究表明癌细胞会对先天免疫系统和适应性免疫系统的抗癌活性产生抗药性。因此,虽然免疫系统很重要,但它可能不是多细胞生物体中出现的预防癌症形成的最重要的机制。研究人员认为,在进化过程中还存在其他更有效且古老的抗癌机制。值得注意的是,RNA干扰(RNAi)是一种高度保守的基因表达沉默生物学机制。虽然RNAi可能是作为针对病毒和其他外来核酸的防御工具而出现的,但它也已经进化为在细胞中具有其他活性。该团队的研究发现了一种新的基于RNAi的进化保守的细胞死亡形式,其目标是必需的生存基因:生存基因消除诱导的死亡(DISE)。“DISE是通过我们对CD95及其配体CD95L的研究发现的,我们发现源自这两个基因的26种不同的短干扰RNA(siRNA)和短发夹RNA(shRNA)中超过80%杀死了多种癌细胞系通过同时激活多个细胞死亡途径;我们无法找到抑制这种形式的细胞死亡的方法。”...PC版:https://www.cnbeta.com.tw/articles/soft/1395153.htm手机版:https://m.cnbeta.com.tw/view/1395153.htm

封面图片

DNA诱饵在突破性疫苗方法中战胜病毒

DNA诱饵在突破性疫苗方法中战胜病毒这种疫苗已在小鼠身上进行了试验,它由一个DNA支架组成,支架上有许多病毒抗原的拷贝。这种疫苗被称为微粒疫苗,模仿病毒的结构。以前大多数微粒疫苗的研究工作都依赖于蛋白质支架,但这些疫苗中使用的蛋白质往往会产生不必要的免疫反应,从而分散免疫系统对目标的注意力。在小鼠研究中,研究人员发现DNA支架不会诱发免疫反应,从而使免疫系统能够将抗体反应集中在目标抗原上。麻省理工学院生物工程学教授马克-巴特(MarkBathe)说:"我们在这项工作中发现,DNA不会诱发抗体,以免分散对相关蛋白质的注意力。可以想象的是,B细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的--让免疫系统激光聚焦于感兴趣的抗原。"研究人员说,这种能强烈刺激B细胞(产生抗体的细胞)的方法能让人们更容易开发出针对艾滋病、流感以及SARS-CoV-2等难以针对的病毒的疫苗。与受到其它类型疫苗刺激的T细胞不同,这些B细胞可以持续数十年,提供长期保护。哈佛大学医学院副教授、拉贡研究所首席研究员丹尼尔-凌伍德说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这种将针对目标抗原的反应与平台本身脱钩的想法是一种潜在的强大免疫学技巧,现在我们可以利用它来帮助这些免疫学靶向决策朝着更有针对性的方向发展"。Bathe、Lingwood和哈佛大学医学院副教授、拉贡研究所首席研究员亚伦-施密特(AaronSchmidt)是这篇论文的资深作者,论文今天(1月30日)发表在《自然-通讯》(NatureCommunications)杂志上。论文的主要作者包括麻省理工学院前博士后艾克-克里斯蒂安-瓦姆霍夫、拉贡研究所博士后拉兰斯-隆萨、哈佛大学前研究生贾里德-费尔德曼、麻省理工学院研究生格兰特-克纳普和哈佛大学前研究生布莱克-豪瑟。微粒疫苗通常由一种蛋白质纳米粒子组成,其结构与病毒相似,可携带许多病毒抗原拷贝。这种高密度的抗原能产生比传统疫苗更强的免疫反应,因为人体认为它与真正的病毒相似。目前已开发出针对乙型肝炎和人类乳头瘤病毒等少数病原体的微粒疫苗,而针对SARS-CoV-2的微粒疫苗也已获准在韩国使用。这些疫苗尤其擅长激活B细胞,使其产生针对疫苗抗原的特异性抗体。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"不过,这种疫苗的一个潜在缺点是,用于支架的蛋白质通常会刺激人体产生针对支架的抗体。巴特说,这会分散免疫系统的注意力,使其无法如愿启动强有力的反应。他说:"中和SARS-CoV-2病毒需要一种疫苗以产生针对病毒尖峰蛋白受体结合域部分的抗体。当在基于蛋白质的微粒上显示这种抗体时,免疫系统不仅能识别受体结合域蛋白质,还能识别与试图引起的免疫反应无关的所有其他蛋白质。"另一个潜在的缺点是,如果同一个人接种了不止一种由相同蛋白支架携带的疫苗,例如接种了SARS-CoV-2疫苗,然后又接种了流感疫苗,那么他们的免疫系统很可能会立即对蛋白支架产生反应,因为他们已经做好了对蛋白支架产生反应的准备。这可能会削弱对第二种疫苗所含抗原的免疫反应。Bathe说:"如果想应用这种基于蛋白质的微粒来免疫不同的病毒(如流感),那么免疫系统就会沉迷于它已经看到并产生免疫反应的底层蛋白质支架。这可能会降低机体对实际抗原的抗体反应质量。"作为一种替代方法,Bathe的实验室一直在开发使用DNA折纸制作的支架,这种方法可以精确控制合成DNA的结构,并允许研究人员在特定位置附着各种分子,如病毒抗原。在2020年的一项研究中,巴特和麻省理工学院生物工程及材料科学与工程教授达雷尔-欧文(DarrellIrvine)发现,携带30个艾滋病毒抗原拷贝的DNA支架可以在实验室培育的B细胞中产生强烈的抗体反应。这种结构是激活B细胞的最佳选择,因为它与纳米级病毒的结构非常相似,而纳米级病毒的表面会显示许多病毒蛋白的拷贝。Lingwood说:"这种方法建立在B细胞抗原识别的基本原理基础之上,即如果对抗原进行阵列显示,就能促进B细胞的反应,提高抗体输出的数量和质量。"在新的研究中,研究人员换用了由SARS-CoV-2原始菌株中尖峰蛋白的受体结合蛋白组成的抗原。在给小鼠注射疫苗时,他们发现小鼠对尖峰蛋白产生了高水平的抗体,但对DNA支架却没有产生任何抗体。与此相反,以一种名为铁蛋白的支架蛋白为基础、涂有SARS-CoV-2抗原的疫苗产生了许多针对铁蛋白和SARS-CoV-2的抗体。"DNA纳米粒子本身没有免疫原性,"Lingwood说。"使用基于蛋白质的平台会对平台和感兴趣的抗原产生同样高滴度的抗体反应,这会使重复使用该平台变得复杂,因为身体会对它产生高亲和力的免疫记忆"。减少这些脱靶效应还有助于科学家们实现开发一种疫苗的目标,这种疫苗可以诱导针对任何变异的SARS-CoV-2甚至所有冠状病毒的广泛中和抗体,而冠状病毒是包括SARS-CoV-2以及导致SARS和MERS的病毒在内的病毒亚属。为此,研究人员正在探索一种附有多种不同病毒抗原的DNA支架能否诱导出针对SARS-CoV-2和相关病毒的广泛中和抗体。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1415109.htm手机版:https://m.cnbeta.com.tw/view/1415109.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人