英国科学家解锁光纤新频段,实现 301,000 Gbps 超高速网络

英国科学家解锁光纤新频段,实现301,000Gbps超高速网络https://www.ithome.com/0/759/229.htm具体来说,该团队研制了“光放大器和光增益均衡器”,除了商用化的C波段和L波段之外,还能利用E波段和S波段进行信号传输。“在我们的装置研发出来之前,没有人能够以可控的方式正确模拟E波段信道,”参与该项目的阿斯顿大学研究人员之一伊恩・菲利普斯(IanPhillips)表示。

相关推荐

封面图片

英国科学家解锁光纤新频段,实现 301000 Gbps 超高速网络

英国科学家宣称,他们研发出了一种通过单根标准光纤实现高达30.1万Gbps网速的技术。阿斯顿大学的研究团队通过利用新的光纤波长频段实现了这一突破。这些频段目前尚未被现有的光纤电缆所使用。此前其他科学家也曾通过将光脉冲分割成更多波段的方式实现超过100万Gbps的超高速网络,从而提升数据传输速率。然而,阿斯顿大学团队的论文指出,这些解决方案通常需要对整个光纤网络进行升级。“相比之下,我们的多波段传输(MBT)技术虽然总体带宽受限于既有标准单模光纤(SSMF),但仅需在节点和运营商层面进行系统升级,”研究人员写道。他们还提到,这项实验是在长达50公里的光纤上进行的。具体来说,该团队研制了“光放大器和光增益均衡器”,除了商用化的C波段和L波段之外,还能利用E波段和S波段进行信号传输。“在我们的装置研发出来之前,没有人能够以可控的方式正确模拟E波段信道,”参与该项目的阿斯顿大学研究人员之一伊恩・菲利普斯(IanPhillips)表示。这项研究成果有望为互联网服务商提供一种更实惠的方式来提高现有光纤网络的速率,“通过利用更多可用频段(不仅仅是传统C波段,还包括L、S以及现在的新增E波段)来提高系统容量,可以帮助降低提供带宽的成本,”阿斯顿大学教授瓦莱德・福里什亚克(WladekForysiak)补充道,“这相比于部署更多新型光纤来说,也是一种更加环保的解决方案。”via匿名标签:#光纤#网络频道:@GodlyNews1投稿:@GodlyNewsBot

封面图片

日本在标准商用光纤中创下 402 Tbps 传输速率的世界纪录

日本在标准商用光纤中创下402Tbps传输速率的世界纪录由日本国家信息通信研究机构(NICT)光子网络实验室领导的国际联合研究小组演示了创纪录的37.6THz总光传输带宽,从而在标准市售光纤中创下了每秒402Tbps的新数据速率记录。NICT在50公里长的单光缆上通过1505个信道传输信号,使用了6种放大器和1个光增益均衡器实现了以上记录。该技术可以使用现有光纤基础设施的情况下,让数据传输速率容量高出此前纪录25%,传输带宽增加35%,表明当前光纤措施仍有很大的潜力值得挖掘。——

封面图片

研究人员利用现有光纤达到了301Tbps的传输速率

研究人员利用现有光纤达到了301Tbps的传输速率红外线传送是光纤宽带的一般工作原理,但研究人员利用新的定制设备,开发了一个从未在商业系统中使用过的频段,即"E波段"。伊恩-菲利普斯博士与波长管理装置。图片:阿斯顿大学科学家们在一份声明中说,工程与技术研究所(IET)于今年3月公布了测试结果,测试使用的是已经铺设在地下的光纤电缆。研究小组还在2023年10月于格拉斯哥举行的欧洲光通信会议(ECOC)上介绍了这项研究,但论文尚未公开。所有商用光纤连接都通过电缆在电磁波谱中的红外线C波段和L波段部分传送数据。用于互联网连接的特定红外区域范围为1260至1675纳米(nm),可见光波长大约在光谱的400纳米到700纳米之间。C波段和L波段(波长在1530纳米和1625纳米之间)通常用于商业连接,因为它们最稳定,意味着传输过程中丢失的数据最少。但科学家们推测,总有一天,巨大的流量会导致这两个波段拥堵,这意味着需要增加传输波段来提高容量。S波段与C波段相邻,波长范围在1460纳米到1530纳米之间。"波分复用"(WDM)系统中与其他两个波段结合使用,从而达到更高的传输速度。然而,科学家们以前从未能够模拟E波段连接,因为该区域的数据丢失率极高,大约是C波段和L波段传输丢失率的五倍。具体来说,光导纤维很容易受到羟基(OH)分子的影响,这些分子可能通过制造过程或自然环境进入管道并破坏连接。E波段被称为"水峰值"波段,因为该区域的红外光吸收羟基分子会造成极高的传输损耗。在新的研究中,科学家们建立了一个系统,使稳定的E波段传输成为可能。他们利用E波段和邻近的S波段演示了成功稳定的高速数据传输。为了在这一电磁频谱区域保持稳定的连接,研究人员创造了两种名为"光放大器"的新设备。"光放大器"和"光增益均衡器"前者有助于远距离放大信号,后者则监控每个波长通道,并在需要时调整幅度。他们在光纤电缆中部署了这些设备,以确保红外光传输数据时不会出现通常困扰这些波段连接的不稳定性和损耗。"过去几年中,阿斯顿大学一直在开发在E波段工作的光放大器。"伊恩-菲利普斯伊恩-菲利普斯(IanPhillips)说。"在开发我们的设备之前,没有人能够以可控的方式正确模拟E波段信道"。尽管301Tbps的速度已经非常快,但近年来其他科学家已经利用光纤连接展示了更快的速度。例如,美国国家信息与通信技术研究所的一个团队创下了每秒22.9Petabits的纪录,比阿斯顿大学团队达到的速度快75倍。他们使用了波分复用技术在8英里(13公里)的距离上演示了这种高速连接,但没有使用E波段。...PC版:https://www.cnbeta.com.tw/articles/soft/1425592.htm手机版:https://m.cnbeta.com.tw/view/1425592.htm

封面图片

英国科学家解锁光纤新频段实现301000Gbps超高速网络英国科学家宣称,他们研发出了一种通过单根标准光纤实现高达30.1万Gb

封面图片

科学家开发出突破性微型光纤激光器 更锐利、更小巧、更智能

科学家开发出突破性微型光纤激光器更锐利、更小巧、更智能基于氮化硅光子集成电路的全封装混合集成铒激光器的光学图像,可提供光纤激光器相干性和以前无法实现的频率可调谐性。资料来源:AndreaBancora和YangLiu(洛桑联邦理工学院)光纤激光器使用掺杂稀土元素(铒、镱、钕等)的光纤作为光增益源(产生激光的部分)。光纤激光器能发出高质量的光束,输出功率高,效率高,维护成本低,经久耐用,而且体积通常比气体激光器小。光纤激光器也是低相位噪声的"黄金标准",这意味着它们的光束可以长期保持稳定。尽管如此,人们对芯片级光纤激光器微型化的需求仍在不断增长。基于铒的光纤激光器尤其令人感兴趣,因为它们符合保持激光器高相干性和稳定性的所有要求。但是,要实现光纤激光器的微型化,就必须在小尺度上保持其性能。现在,EPFL的刘洋博士和TobiasKippenberg教授领导的科学家们制造出了首台芯片集成的掺铒波导激光器,其性能接近光纤激光器,将宽波长可调谐性与芯片级光子集成的实用性相结合。这一突破发表在《自然-光子学》(NaturePhotonics)上。制造芯片级激光器研究人员采用最先进的制造工艺开发出了芯片级铒激光器。他们首先在超低损耗氮化硅光子集成电路的基础上构建了一个一米长的片上光腔(一组提供光反馈的反射镜)。刘博士说:"尽管芯片尺寸小巧,但我们却能将激光腔设计成米级长度,这要归功于这些微oring谐振器的集成,它们能在不增大设备物理尺寸的情况下有效延长光路。"然后,研究小组在电路中植入高浓度铒离子,选择性地产生激光所需的有源增益介质。最后,他们将电路与III-V族半导体泵浦激光器集成,以激发铒离子,使其发光并产生激光束。基于掺铒光子集成电路的混合集成激光器的光学图像,该激光器具有光纤激光相干性和以前无法实现的频率可调谐性。资料来源:YangLiu(洛桑联邦理工学院)为了完善激光器的性能并实现精确的波长控制,研究人员设计了一种创新的腔内设计,其特点是基于微孔的Vernier过滤器,这是一种可以选择特定光频的光学过滤器。滤波器可在很大范围内对激光波长进行动态调整,从而使其在各种应用中都能发挥作用。这种设计支持稳定的单模激光,其内在线宽仅为50Hz,非常窄,令人印象深刻。它还具有显著的边模抑制功能--激光器能够以单一、稳定的频率发光,同时将其他频率("边模")的强度降至最低。这确保了高精度应用在整个光谱范围内的"干净"和稳定输出。这种芯片级铒光纤激光器的输出功率超过10mW,边模抑制比超过70dB,性能优于许多传统系统。它还具有非常窄的线宽,这意味着它发出的光非常纯净和稳定,这对于传感、陀螺仪、激光雷达和光学频率计量等相干应用非常重要。基于微光的Vernier滤波器使激光器在C波段和L波段(用于电信的波长范围)内具有40nm的宽波长可调谐性,在调谐和低光谱尖刺指标("尖刺"是不需要的频率)方面都超越了传统光纤激光器,同时与当前的半导体制造工艺保持兼容。将铒光纤激光器微型化并集成到芯片级设备中可降低其总体成本,使其可用于电信、医疗诊断和消费电子等领域的便携式高度集成系统。它还可以缩小光学技术在其他各种应用中的规模,如激光雷达、微波光子学、光频合成和自由空间通信。"这种新型掺铒集成激光器的应用领域几乎是无限的,"Liu说。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434644.htm手机版:https://m.cnbeta.com.tw/view/1434644.htm

封面图片

光参量放大器的进化潜力有望通向通信技术的新时代

光参量放大器的进化潜力有望通向通信技术的新时代本研究中使用的光子集成电路。资料来源:TobiasKippenberg(EPFL),CCBY4.0光放大在几乎所有基于激光的技术中都发挥着关键作用,如光通信(用于数据中心,通过跨洋光纤链路在服务器之间和大陆之间进行通信),以及相干调频连续波(FMCW)LiDAR等测距应用--这是一项新兴技术,可以比以往更远、更快、更精确地探测和跟踪物体。今天,基于铒等稀土离子以及III-V族半导体的光放大器被广泛用于现实世界的应用。这两种方法都是基于光学转换的放大。但还有另一种光学信号放大的模式:光参量放大器,它通过改变一个小的系统"参数",如传输线的电容或非线性来实现信号放大。自80年代以来,人们已经知道,包含光纤的内在非线性也可以被利用来创造行波光参量放大器,其增益与原子或半导体转换无关,这意味着它可以是宽频带的,几乎覆盖任何波长。光参量放大器也不会受到最小输入信号的影响,这意味着它们可以在一次设置中同时放大最微弱的信号和大输入功率。最后,增益光谱可以通过波导几何优化和色散工程来定制,这为目标波长和应用提供了巨大的设计灵活性。最耐人寻味的是,光参量增益可以在传统半导体或掺稀土光纤无法企及的不寻常波段得到,参量放大在本质上是有量子限制的,甚至可以实现无噪音的放大。尽管光纤中的光参量放大器具有吸引人的特点,但由于二氧化硅的弱克尔非线性,它们对泵浦功率的要求非常高。在过去的20年里,集成光子平台的进步使有效的克尔非线性得到了明显的增强,这在硅纤维中是无法实现的,但通信行业还没有实现连续波操作的放大器。"在连续波系统中运行不是一个单纯的'学术成就',"EPFL的光子学和量子测量实验室负责人TobiasKippenberg教授说。"事实上,它对任何放大器的实际操作都至关重要,因为它意味着任何输入信号都可以被放大--例如,光学编码的信息、来自LiDAR和传感器的信号等。时间和频谱连续的行波放大对于现代光通信系统中的放大器技术的成功实施以及光学传感和测距的新兴应用来说是至关重要的。"由Kippenberg小组的JohannRiemensberger博士领导的一项新研究现在已经解决了这一挑战,开发了一个基于光子集成电路的行波放大器,在连续系统中运行。"Riemensberger说:"我们的成果是十多年来在集成非线性光子学和追求更低的波导损耗方面的研究努力的结晶。研究人员使用了一个超过两米长的超低损耗氮化硅光子集成电路,在一个3×5平方毫米的光子芯片上建立了第一个行波放大器。该芯片在连续体制下工作,在电信波段提供7dB的片上净增益和2dB的光纤到光纤净增益。最近,查尔姆斯大学的VictorTorres-Company和PeterAndrekson小组也在氮化硅中实现了片上净增益参数放大功能。在未来,该团队可以使用精确的光刻控制来优化波导色散,使参数增益带宽超过200纳米。由于氮化硅的基本吸收损耗非常低(约0.15dB/米),进一步的制造优化可以使芯片的最大参数增益超过70dB,只需750mW的泵浦功率,超过最好的光纤放大器的性能。"这种放大器的应用领域是无限的,"Kippenberg说。"从可以将信号扩展到典型电信频段之外的光通信,到中红外或可见光激光和信号放大,再到LiDAR或其他应用,其中激光被用来探测、感应和询问经典或量子信号。"...PC版:https://www.cnbeta.com.tw/articles/soft/1340887.htm手机版:https://m.cnbeta.com.tw/view/1340887.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人