麻省理工学院最新创新成果:可以阻断外周神经疼痛的软光纤

麻省理工学院最新创新成果:可以阻断外周神经疼痛的软光纤科学家们有了一种新工具,可以精确地照亮神经疼痛的根源。麻省理工学院的工程师们开发出了可植入的软纤维,这种纤维能将光线传送到人体的主要神经。当这些神经经过基因改造对光做出反应时,光纤就能向神经发送光脉冲,从而抑制疼痛。光导纤维是柔性的,可随人体伸缩。这种新型纤维是一种实验工具,科学家可以用它来探索动物模型中周围神经疾病的原因和潜在治疗方法。当大脑和脊髓以外的神经受损时,就会出现周围神经痛,导致受影响的肢体刺痛、麻木和疼痛。据估计,美国有超过2000万人患有周围神经病。马萨诸塞大学阿默斯特分校生物医学工程助理教授饶思远(SiyuanRao)说:"目前用于研究神经疾病的设备都是由限制运动的僵硬材料制成的,因此如果涉及疼痛,我们就无法真正研究脊髓损伤和恢复情况。我们的纤维可以适应自然运动,并在不限制受试者运动的情况下完成工作。这可以为我们提供更精确的信息"。麻省理工学院的工程师们设计了一种软水凝胶光纤(如图所示),它可以刺激外周神经,帮助研究人员确定神经相关疼痛的起源和治疗方法。图片来源:研究人员提供"现在,人们有了一种工具,可以在非常动态、自然和无约束的条件下研究与外周神经系统有关的疾病,"22岁的刘欣悦(XinyueLiu)博士补充说,她现在是密歇根州立大学(MSU)的助理教授。今天(10月19日)发表在《自然-方法》(NatureMethods)杂志上的一项研究报告详细介绍了他们团队的新型纤维。Rao和Liu在麻省理工学院的合著者包括化学系研究生AtharvaSahasrabudhe、机械工程和土木与环境工程系教授XuanheZhao、材料科学与工程系教授PolinaAnikeeva,以及密歇根州立大学、马萨诸塞大学阿默斯特分校、哈佛医学院和美国国立卫生研究院的其他教授。将光遗传学扩展到大脑之外这项新研究源于研究小组希望将光遗传学的应用扩展到大脑以外的领域。光遗传学是一种通过基因工程使神经对光做出反应的技术。暴露在光线下可以激活或抑制神经,从而为科学家提供有关神经如何工作以及如何与周围环境相互作用的信息。神经科学家已经在动物身上应用光遗传学来精确追踪一系列脑部疾病的神经通路,包括成瘾、帕金森病、情绪和睡眠障碍--这些信息已经促成了针对这些疾病的靶向疗法。迄今为止,光遗传学主要应用于大脑,这一区域缺乏痛觉感受器,因此可以相对无痛地植入硬质装置。然而,硬质装置仍会损伤神经组织。麻省理工学院的研究小组想知道,这种技术能否扩展到大脑以外的神经。与大脑和脊髓一样,外周系统的神经也会受到一系列损伤,包括坐骨神经痛、运动神经元疾病以及全身麻木和疼痛。光遗传学可以帮助神经科学家确定外周神经疾病的具体原因,并测试缓解这些疾病的疗法。但是,在大脑之外实施这项技术的主要障碍是运动。周围神经不断受到周围肌肉和组织的推拉。如果在外周使用刚性硅装置,就会限制动物的自然运动,并可能造成组织损伤。晶体与光研究人员希望开发出一种能与身体一起工作和运动的替代品。他们的新设计是一种柔软、可伸缩的透明纤维,由水凝胶制成。水凝胶是一种橡胶状、生物相容性高的聚合物和水的混合物,他们调整了水凝胶的比例,以创造出微小、纳米级的聚合物晶体,散布在更像果冻的溶液中。光纤包含两层--内芯和外壳或"包层"。研究小组混合了每一层的溶液,以产生特定的晶体排列。这种排列使每一层都具有特定的、不同的折射率。...PC版:https://www.cnbeta.com.tw/articles/soft/1391205.htm手机版:https://m.cnbeta.com.tw/view/1391205.htm

相关推荐

封面图片

麻省理工学院神经科学家发现逆转阿尔茨海默病的方法

麻省理工学院神经科学家发现逆转阿尔茨海默病的方法麻省理工学院Picower学习和记忆研究所所长、该研究的资深作者Li-HueiTsai说:"我们发现,这种肽的效果非常显著。我们看到了在减少神经变性和神经炎症反应方面的奇妙效果,甚至还能挽救行为缺陷。"随着进一步的测试,研究人员希望该肽最终能被用作治疗阿尔茨海默病和其他形式的痴呆症患者,这些患者有CDK5过度活化。该肽不会干扰CDK1,这是一种与CDK5结构相似的基本酶,而且它与其他用于临床的肽类药物大小相似。Picower研究所的研究科学家Ping-ChiehPao是该论文的主要作者,该论文于4月12日发表在《美国国家科学院院刊》上。在用新肽治疗的小鼠的大脑中(右面两个面板),右上方看到的Tau蛋白(被染成紫色)少了很多。左边的图像显示了用该肽的杂乱版本治疗的小鼠的神经元。在底部的两个面板中,细胞核中的DNA被染成蓝色,显示Tau水平的变化不是由细胞群的显著变化引起的。Tsai在其职业生涯早期就一直在研究CDK5在阿尔茨海默病和其他神经退行性疾病中的作用。作为一名博士后,她发现并克隆了CDK5基因,该基因编码了一种被称为细胞周期蛋白依赖性激酶的酶。其他大多数细胞周期蛋白依赖性激酶都参与控制细胞分裂,但CDK5却不是。相反,它在中枢神经系统的发展中起着重要作用,也有助于调节突触功能。CDK5被一个与之相互作用的较小的蛋白质激活,该蛋白质被称为P35。当P35与CDK5结合时,该酶的结构发生变化,使其能够磷酸化--在其目标上添加一个磷酸盐分子。然而,在阿尔茨海默氏症和其他神经退行性疾病中,P35被裂解成一个较小的蛋白质,称为P25,它也能与CDK5结合,但比P35的半衰期更长。当与P25结合时,CDK5在细胞中变得更加活跃。P25还允许CDK5对其通常目标以外的分子进行磷酸化,包括Tau蛋白。过度磷酸化的Tau蛋白形成神经纤维缠结,这是阿尔茨海默病的特征之一。在以前的工作中,Tsai的实验室已经表明,转基因小鼠被设计为表达P25,会出现严重的神经变性。在人类中,P25与几种疾病有关,不仅包括阿尔茨海默氏症,还包括帕金森病和额颞叶痴呆症。制药公司曾试图用小分子药物来靶向P25,但这些药物往往会产生副作用,因为它们也会干扰其他细胞周期蛋白依赖性激酶,所以没有一种药物在病人身上进行测试。麻省理工学院的团队决定采取一种不同的方法来靶向P25,即使用一种肽而不是小分子药物。他们设计的肽的序列与CDK5的一段称为T环的序列相同,这是CDK5与P25结合的关键结构。整个多肽只有12个氨基酸长--比大多数现有的多肽药物略长,后者是5到10个氨基酸长。Tsai说:"从肽类药物的角度来看,通常越小越好。"我们的多肽几乎在这个理想的分子大小之内。"戏剧性的效果在实验室培养皿中的神经元测试中,研究人员发现,用该肽治疗导致CDK5活性的适度降低。这些测试还表明,该肽并不抑制正常的CDK5-P35复合物,也不影响其他细胞周期蛋白依赖性激酶。当研究人员在CDK5过度活跃的阿尔茨海默病小鼠模型中测试该肽时,他们看到了无数的有益影响,包括减少DNA损伤、神经炎症和神经元损失。这些效果在小鼠研究中比在培养细胞的测试中要明显得多。肽治疗还在不同的阿尔茨海默氏症小鼠模型中产生了巨大的改善,该模型有一个导致神经纤维缠结的Tau蛋白突变形式。治疗后,这些小鼠显示Tau病症和神经元损失都有所减少。除了大脑中的这些影响外,研究人员还观察到行为上的改善。在一项需要学习浏览水迷宫的任务中,用该肽治疗的小鼠比用对照肽(用于抑制CDK5-P25的多肽的干扰版本)治疗的小鼠表现得更好,水迷宫依赖于空间记忆。在这些小鼠研究中,研究人员注射了该肽,并发现它能够穿过血脑屏障,到达海马体和大脑其他部位的神经元。研究人员还分析了用该肽治疗后小鼠神经元中发生的基因表达变化。他们观察到的变化包括大约20个基因的表达增加,这些基因通常由一个叫做MEF2的基因调节器家族激活。Tsai的实验室之前已经表明,MEF2激活的这些基因可以赋予有Tau缠结的人的大脑对认知障碍的恢复力,她假设这种肽治疗可能有类似的效果。斯克里普斯研究中心的神经科学教授斯图尔特-利普顿(StuartLipton)说:"如果证明这种肽抑制剂对目标有选择性,并且相对没有临床副作用,那么最终可能会导致对神经退行性疾病的新的治疗,范围包括阿尔茨海默病、前颞叶痴呆症和帕金森病。"Tsai现在计划在其他涉及P25相关神经退行性疾病的小鼠模型中做进一步研究,如额颞叶痴呆症、HIV诱导的痴呆症和糖尿病相关的认知障碍。她说:"很难准确地说哪种疾病会最受益,所以我认为还需要做更多的工作。"...PC版:https://www.cnbeta.com.tw/articles/soft/1354615.htm手机版:https://m.cnbeta.com.tw/view/1354615.htm

封面图片

麻省理工学院揭示神经系统如何整合环境和状态以控制行为

麻省理工学院揭示神经系统如何整合环境和状态以控制行为麻省理工学院的一项新研究详细介绍了这一方法在一种更简单的动物身上的应用实例。它强调了一个潜在的基本原则,即神经系统如何整合多种因素来指导寻找食物的行为。所有的动物都面临着在制定行为时权衡不同的感官线索和内部状态的挑战,但科学家们对这一情况的实际发生知之甚少。为了深入了解,位于皮考尔学习和记忆研究所的研究小组转向了秀丽隐杆线虫,其明确的行为状态和只有302个细胞神经系统使这个复杂的问题至少是可操作的。他们通过一个案例研究发现,在一个名为AWA的关键嗅觉神经元中,许多状态和感觉信息的来源汇聚在一起,独立地节制着一个关键气味受体的表达。它们对该受体丰度的影响的整合,然后决定了AWA如何指导四处漫游寻找食物。"在这项研究中,我们根据动物所经历的持续状态和刺激,剖析了控制单个嗅觉神经元中单个嗅觉受体水平的机制,"资深作者、麻省理工学院脑与认知科学系李斯特兄弟副教授史蒂文·弗拉维尔说。"了解这种整合如何在一个细胞中发生,将为它如何在其他蠕虫神经元和其他动物中普遍发生指明方向。"麻省理工学院博士后IanMcLachlan领导了这项研究,该研究最近发表在eLife杂志上,该团队在开始时并不一定知道他们会发现什么。事实上,麦克拉克兰、弗拉维尔和他们的团队并没有专门去寻找神经元AWA或被称为STR-44的特定嗅觉化学感受器。相反,这些目标是从他们收集的无偏见的数据中出现的,当时他们研究了当蠕虫在三小时内不进食时与进食充足时相比哪些基因的表达变化最大。作为一个类别,许多化学感觉受体的基因显示出巨大的差异。事实证明,AWA是一个拥有大量此类上调基因的神经元,而两个受体STR-44和SRD-28在这些基因中显得尤为突出。仅这一结果就表明,内部状态(饥饿)影响着感觉神经元中受体的表达程度。麦克拉克兰和他的合著者随后能够表明,STR-44的表达也会根据压力化学品的存在、各种食物的气味以及蠕虫是否得到了吃食物的好处而独立变化。由共同第二作者TalyaKramer(一名研究生)领导的进一步测试揭示了哪些气味会触发STR-44,使研究人员随后能够证明AWA内STR-44表达的变化如何直接影响食物的寻求行为。还有更多的研究确定了这些不同的信号进入AWA的确切分子和电路手段,以及它们如何在细胞内作用以改变STR-44的表达。例如,在一个实验中,麦克拉克兰和弗拉维尔的团队表明,虽然喂养的和饥饿的蠕虫都会朝着受体最喜欢的气味蠕动,如果这些气味足够强烈的话,但只有饥饿的蠕虫(表达更多的受体)可以检测到更微弱的浓度。在另一个实验中,他们发现,尽管饥饿的蠕虫在到达食物源时将放慢速度进食,即使吃饱的蠕虫在旁边游弋,但他们可以通过人为地过度表达STR-44使吃饱的蠕虫表现得像饥饿的蠕虫。这样的实验证明STR-44的表达变化对寻找食物有直接影响。其他实验显示了多种因素对STR-44的拉动。例如,他们发现,当他们添加一种化学品使蠕虫受到压力时,即使在饥饿的蠕虫中也会降低STR-44的表达。后来他们发现,同样的应激物抑制了蠕虫向STR-44所反应的气味蠕动的冲动。因此,就像你可能会避免跟随你的鼻子去面包店,即使在饥饿的时候如果你看到你的前任在那里,会权衡压力来源和饥饿感。该研究显示,它们这样做是基于这些不同的线索和状态如何拉动AWA中STR-44的表达。其他几个实验研究了蠕虫的神经系统将感觉、饥饿和主动进食线索带到AWA的途径。技术助理MalvikaDua帮助揭示了其他食物感应神经元如何通过胰岛素信号和突触连接来影响STR-44在AWA的表达。关于蠕虫是否正在积极进食的线索来自肠道中的神经元,这些神经元使用一种叫做TORC2的分子营养传感器。这些,以及压力检测途径,都作用于FOXO,它是基因表达的调节器。换句话说,所有影响STR-44在AWA中表达的输入都是通过独立推拉同一个分子杠杆来实现的。像胰岛素和TORC2这样的途径不仅存在于其他蠕虫的感觉神经元中,而且也存在于包括人类在内的许多其他动物。此外,在更多的神经元中,感觉受体因禁食而上调,而不仅仅是AWA。这些重叠表明,他们在AWA中发现的整合信息的机制很可能在其他神经元中发挥作用,也许在其他动物中也是如此。这项研究的基本见解可能有助于为研究通过TORC2的肠道-大脑信号如何在人体内发挥作用提供信息。这正在成为优雅动物中肠道到大脑信号传递的主要途径,希望它最终将对人类健康具有转化意义。...PC版:https://www.cnbeta.com.tw/articles/soft/1333817.htm手机版:https://m.cnbeta.com.tw/view/1333817.htm

封面图片

麻省理工学院研究人员利用压电纤维开发出主动降噪织物

麻省理工学院研究人员利用压电纤维开发出主动降噪织物这项发表在《先进材料》(AdvancedMaterials)杂志上的研究,是在早先研究的基础上,创造出一种可以充当麦克风并放大声音的丝绸织物。在研究过程中,研究小组意识到他们的材料还可以用来过滤声音。他们将后一个想法付诸实践。这种由压电纤维制成的特制织物几乎不比头发丝粗。当施加电压时,这种材料就会振动,如果调整得当,就能像降噪耳机一样抵消传入的声音。这种方法在狭小的空间内很有用,但在室内却不奏效。为了应对这一挑战,他们需要一种不同的方法。研究人员发现,通过使用电压使织物完全静止,可以使其变成一种声屏障,像镜子一样将声音反射回声源。在测试中,直接抑制模式(类似于降噪耳机)能够将音量降低65分贝。在"静止"模式下,声音传播降低了75%。虽然前景广阔,但在考虑商业推广之前,仍有许多工作要做。该团队需要进行更多的测试,以了解纤维数量、缝合方向和电源电压等变量的变化对性能的影响。第一作者格蕾丝-杨(GraceYang)说,这仅仅是个开始,要让这项技术真正有效,"我们还有很多旋钮可以转动"。他们还需要找出将其推向市场的最佳方法。这项研究的共同作者、麻省理工学院教授尤尔-芬克(YoelFink)告表示,这种材料现在还太新,他甚至不知道它的市场在哪里。...PC版:https://www.cnbeta.com.tw/articles/soft/1432682.htm手机版:https://m.cnbeta.com.tw/view/1432682.htm

封面图片

麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞":开拓能源新时代麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者YogeshSurendranath说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液pH值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(NoahLewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后RyanBisbey、麻省理工学院研究生KarlWestendorff和耶鲁大学研究科学家AlexanderSoudackov也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率--质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的pH值对这一速率有显著影响:最高速率出现在pH值的两端--酸性最强的pH值为0,碱性最强的pH值为14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH值为0时的速度比pH值为14时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性pH值为7(氢铵和氢氧根的浓度相等)时相等,而是在pH值为10(氢氧根离子的浓度是氢铵的100万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424095.htm手机版:https://m.cnbeta.com.tw/view/1424095.htm

封面图片

麻省理工学院为细胞打造“健身计划” 设计水凝胶“房”

麻省理工学院为细胞打造“健身计划”设计水凝胶“健身房”麻省理工学院的工程师设计了一种细胞锻炼垫,可以帮助科学家在微观层面上对运动的机械效应进行归零。研究结果表明,经常锻炼有助于肌肉纤维向同一方向生长。图片来源:EllaMarushchenko现在,麻省理工学院的工程师们设计出了一种细胞锻炼垫,它可以帮助科学家们在微观层面上对运动的纯机械效应进行归零。这种新设计与瑜伽垫并无太大区别:两者都是橡胶材质,有一定的伸缩性。就麻省理工学院的垫子而言,它是由水凝胶制成的,水凝胶是一种类似果冻的柔软材料,只有四分之一硬币大小,内嵌磁性微粒。为了激活凝胶的机械功能,研究人员在垫子下方使用了一块外部磁铁,来回移动嵌入的微粒,使凝胶像振动垫一样摇摆。他们控制着晃动的频率,以模拟肌肉在实际运动时所承受的力量。接下来,他们在凝胶表面培育了一层肌肉细胞地毯,并激活了磁铁的运动。然后,他们研究了细胞在受到磁力振动时对"运动"的反应。研究结果表明,定期的机械运动可以帮助肌肉纤维向同一方向生长。这些排列整齐的"锻炼"纤维还能同步工作或收缩。研究结果表明,科学家可以利用新的锻炼凝胶来塑造肌肉纤维的生长方式。该研究小组计划利用他们的新装置,将强健、功能性肌肉的薄片模型化,以用于软机器人和修复病变组织。拉曼左侧是研究生安吉尔-布,右侧是研究生布兰登-里奥斯。图片来源:亚当-格兰兹曼麻省理工学院工程设计布里特和亚历克斯-达贝洛夫职业发展教授里图-拉曼(RituRaman)说:"我们希望利用这个新平台来研究机械刺激是否有助于引导受伤后的肌肉再生或减轻衰老的影响。机械力在我们的身体和生活环境中扮演着非常重要的角色。现在我们有了一个研究工具"。她和同事们最近在《设备》(Device)杂志上发表了他们的研究成果。在麻省理工学院,拉曼的实验室设计用于医学和机器人学的自适应生命材料。该团队正在设计功能性神经肌肉系统,目的是恢复运动障碍患者的行动能力,并为柔软的适应性机器人提供动力。为了更好地了解天然肌肉和驱动其功能的力量,她的团队正在研究组织如何在细胞水平上对运动等各种力量做出反应。拉曼说:"在这里,我们想找到一种方法,将运动的两个主要因素--化学和机械--分离开来,看看肌肉是如何纯粹对运动的机械力做出反应的。"研究小组一直在寻找一种方法,让肌肉细胞定期、反复地受到机械力的作用,同时又不会在此过程中对它们造成物理损伤。他们最终选择了磁铁这种安全、无损的方式来产生机械力。对于他们的原型,研究人员首先将市售的磁性纳米粒子与橡胶硅溶液混合,制造出微米大小的小磁棒。他们将混合物固化成板坯,然后将板坯切成非常薄的条状。他们将四根磁棒夹在两层水凝胶(一种通常用于培养肌肉细胞的材料)之间,每根磁棒之间的间距稍大。最后得到的嵌入磁铁的垫子大约有四分之一硬币大小。然后,研究小组在垫子表面培养出"鹅卵石"状的肌肉细胞。每个细胞一开始都是圆形,随着时间的推移逐渐拉长,并与其他相邻细胞融合形成纤维。最后,研究人员在凝胶垫下的轨道上放置了一块外部磁铁,并设定磁铁来回移动的程序。嵌入的磁铁随之移动,使凝胶发生摆动,并产生与细胞在实际运动时类似的力。研究小组每天对细胞进行30分钟的机械"锻炼",持续了10天。作为对照,他们在相同的垫子上培养细胞,但让它们在没有运动的情况下生长。拉曼说:"然后,我们放大并拍摄了凝胶的照片,发现这些受到机械刺激的细胞看起来与对照组细胞截然不同。"研究小组的实验发现,与没有运动的细胞相比,经常暴露在机械运动中的肌肉细胞生长时间更长,而没有运动的细胞则倾向于保持圆形。更重要的是,"运动"过的细胞长出的纤维朝同一方向排列,而不运动的细胞则像杂乱无章的干草堆,纤维排列不整齐。研究小组在这项研究中使用的肌肉细胞是经过基因工程改造的,能在蓝光照射下收缩。通常情况下,人体内的肌肉细胞会在神经电脉冲的作用下收缩。然而,在实验室中对肌肉细胞进行电刺激可能会对它们造成潜在伤害,因此研究小组选择从基因上操纵这些细胞,使它们对非侵入性刺激(在本例中为蓝光)做出收缩反应。拉曼解释说:"当我们用光线照射肌肉时,你可以看到控制细胞在跳动,但有些纤维这样跳动,有些那样跳动,总体上产生了非常不同步的抽搐。而在排列整齐的纤维中,它们都同时朝着同一方向拉动和跳动"。她将这种新的锻炼凝胶命名为MagMA(磁性基质驱动),它可以作为一种快速、无创的方法来塑造肌肉纤维,并研究它们如何对运动做出反应。她还计划在这种凝胶上培养其他类型的细胞,以研究它们如何对定期锻炼做出反应。...PC版:https://www.cnbeta.com.tw/articles/soft/1396981.htm手机版:https://m.cnbeta.com.tw/view/1396981.htm

封面图片

麻省理工学院首次控制量子随机性

麻省理工学院首次控制量子随机性想象一下,平静的海面突然起了波浪--这与量子层面的真空中发生的情况类似。在此之前,科学家们已经利用这些波动生成了随机数。它们也是量子科学家在过去一百年中发现的许多迷人现象的原因。利用真空波动生成可调谐随机数的实验装置。图片来源:CharlesRoques-Carmes、YannickSalamin麻省理工学院博士后CharlesRoques-Carmes和YannickSalamin、麻省理工学院教授MarinSoljačić和JohnJoannopoulos及其同事最近在《科学》(Science)杂志上发表了一篇论文,对上述发现进行了描述。传统上,计算机以确定性的方式运行,按照一系列预定义的规则和算法逐步执行指令。在这种模式下,如果多次运行相同的操作,总会得到完全相同的结果。这种确定性方法为我们的数字时代打下了基础,但也有其局限性,尤其是在模拟物理世界或优化复杂系统时,这些任务往往涉及大量的不确定性和随机性。从量子真空中生成可调随机数的艺术插图。图片来源:陈磊这就是概率计算概念发挥作用的地方。概率计算系统利用某些过程的内在随机性来执行计算。它们不会只提供一个"正确"的答案,而是提供一系列可能的结果,每个结果都有其相关的概率。这使它们非常适合模拟物理现象和解决优化问题,因为在这些问题中可能存在多种解决方案,而对各种可能性的探索可以找到更好的解决方案。工作的主要作者之一CharlesRoques-Carmes博士正在操作实验系统。图片来源:AnthonyTulliani然而,概率计算的实际应用在历史上一直受到一个重大障碍的阻碍:缺乏对量子随机性相关概率分布的控制。不过,麻省理工学院团队开展的研究揭示了一种可能的解决方案。具体来说,研究人员已经证明,向光学参量振荡器(一种自然生成随机数的光学系统)注入微弱的激光"偏压",可以作为"偏压"量子随机性的可控源。"尽管对这些量子系统进行了广泛的研究,但非常微弱的偏置场的影响尚未得到探索,"该研究的研究员CharlesRoques-Carmes说。"我们发现的可控量子随机性不仅让我们能够重新审视量子光学中已有几十年历史的概念,而且还为概率计算和超精确场传感开辟了潜力。"该团队成功展示了操纵与光参量振荡器输出状态相关的概率的能力,从而创造了有史以来第一个可控光子概率位(p-bit)。此外,该系统还显示出对偏置场脉冲时间振荡的敏感性,甚至远低于单光子水平。工作的主要作者之一YannickSalamin博士正在操作实验系统。资料来源:AllysonMacBasino团队另一位成员YannickSalamin说:"我们的光子p比特生成系统目前可以每秒生成10,000个比特,每个比特都可以遵循任意的二项分布。我们预计,这项技术将在未来几年不断发展,从而产生更高速率的光子p位,并实现更广泛的应用。"麻省理工学院的MarinSoljačić教授强调了这项工作的广泛意义:"通过使真空波动成为可控元素,我们正在推动量子增强概率计算的发展。在组合优化和晶格量子色动力学模拟等领域模拟复杂动力学的前景非常令人兴奋"。...PC版:https://www.cnbeta.com.tw/articles/soft/1382749.htm手机版:https://m.cnbeta.com.tw/view/1382749.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人