麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞":开拓能源新时代麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者YogeshSurendranath说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液pH值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(NoahLewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后RyanBisbey、麻省理工学院研究生KarlWestendorff和耶鲁大学研究科学家AlexanderSoudackov也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率--质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的pH值对这一速率有显著影响:最高速率出现在pH值的两端--酸性最强的pH值为0,碱性最强的pH值为14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH值为0时的速度比pH值为14时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性pH值为7(氢铵和氢氧根的浓度相等)时相等,而是在pH值为10(氢氧根离子的浓度是氢铵的100万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424095.htm手机版:https://m.cnbeta.com.tw/view/1424095.htm

相关推荐

封面图片

碳的炼金术:麻省理工学院设计出革命性的二氧化碳转化技术

碳的炼金术:麻省理工学院设计出革命性的二氧化碳转化技术如果将这一工艺扩大到工业用途,将有助于从发电厂和其他来源清除二氧化碳,从而减少排放到大气中的温室气体数量。麻省理工学院的化学工程师们证明,通过使用DNA将催化剂(蓝色圆圈)拴在电极上,可以使二氧化碳转化为一氧化碳的效率大大提高。图片来源:麻省理工学院ChristineDaniloff革命性的脱碳技术"这将能够从排放物或溶解在海洋中的二氧化碳中提取二氧化碳,并将其转化为有利可图的化学品。"保罗-库克(PaulM.Cook)化学工程职业发展助理教授、该研究的资深作者阿里尔-弗斯特(ArielFurst)说:"这确实是一条脱碳之路,因为我们可以把二氧化碳这种温室气体转化为对化学生产有用的东西。"这种新方法利用电力进行化学转换,催化剂通过DNA链系在电极表面。DNA就像尼龙搭扣一样,将所有反应成分紧紧粘在一起,使反应比所有成分都漂浮在溶液中更有效率。Furst创办了一家名为HelixCarbon的公司,以进一步开发这项技术。麻省理工学院前博士后GangFan是这篇论文的第一作者,论文发表在《美国化学学会学报》(JournaloftheAmericanChemicalSocietyAu)上。其他作者包括:21岁的NathanCorbin博士、23岁的MinjuChung博士、麻省理工学院前博士后ThomasGill和AmrutaKarbelkar以及23岁的EvanMoore。分解二氧化碳要将二氧化碳转化为有用的产品,首先需要将其转化为一氧化碳。其中一种方法是用电,但这种电催化所需的能量过于昂贵。为了降低成本,研究人员尝试使用电催化剂,这种催化剂可以加快反应速度,减少系统所需的能量。用于该反应的一种催化剂是一类被称为卟啉的分子,这种分子含有铁或钴等金属,结构类似于血液中携带氧气的血红素分子。在这种电化学反应中,二氧化碳溶解在电化学装置内的水中,该装置包含一个驱动反应的电极。催化剂也悬浮在溶液中。然而,这种装置的效率并不高,因为二氧化碳和催化剂需要在电极表面相遇,而这种情况并不常见。为了使反应更频繁地发生,从而提高电化学转换的效率,Furst开始研究如何将催化剂附着在电极表面。DNA似乎是这种应用的理想选择。她说:"DNA的成本相对较低,你可以用化学方法对其进行修饰,并且可以通过改变序列来控制两条链之间的相互作用。它就像一种序列特异的魔术贴,具有非常强但可逆的相互作用,你可以对其进行控制。"为了将单股DNA连接到碳电极上,研究人员使用了两个"化学手柄",一个在DNA上,另一个在电极上。这些"化学手柄"可以折叠在一起,形成永久性的结合。然后将互补的DNA序列连接到卟啉催化剂上,这样当催化剂加入溶液中时,它就会可逆地与已经连接到电极上的DNA结合--就像魔术贴一样。系统建立后,研究人员向电极施加电势(或偏压),催化剂利用这种能量将溶液中的二氧化碳转化为一氧化碳。反应还能从水中产生少量氢气。催化剂磨损后,可以通过加热系统来破坏两条DNA链之间的可逆键,从而将其从表面释放出来,并用新的催化剂取而代之。突破性的电化学转换利用这种方法,研究人员能够将反应的法拉第效率提高到100%,这意味着进入系统的所有电能都直接进入化学反应,没有能量浪费。而当催化剂没有被DNA拴住时,法拉第效率只有40%左右。Furst说,这项技术可以很容易地扩大到工业用途,因为研究人员使用的碳电极比传统金属电极便宜得多。催化剂也很便宜,因为它们不含任何贵金属,而且电极表面只需要少量的催化剂。通过更换不同的催化剂,研究人员计划尝试用这种方法制造甲醇和乙醇等其他产品。由Furst创办的HelixCarbon公司也在致力于进一步开发该技术,以实现潜在的商业用途。...PC版:https://www.cnbeta.com.tw/articles/soft/1425921.htm手机版:https://m.cnbeta.com.tw/view/1425921.htm

封面图片

量子挤压:麻省理工学院开启精密时钟的新纪元

量子挤压:麻省理工学院开启精密时钟的新纪元根据麻省理工学院的一项新研究,时钟、激光器和其他振荡器可以调整到超量子精度,从而使研究人员能够追踪时间上无限微小的差异。图片来源:麻省理工学院新闻时钟的稳定性取决于其所处环境的噪音。一阵微风就会使钟摆的摆动失去同步。热量也会扰乱原子钟中原子的振荡。消除这些环境影响可以提高时钟的精度。但也仅此而已。麻省理工学院的一项新研究发现,即使消除了来自外界的所有噪声,时钟、激光束和其他振荡器的稳定性仍然容易受到量子力学效应的影响。振荡器的精度最终将受到量子噪声的限制。但理论上,有一种方法可以突破这一量子限制。在他们的研究中,研究人员还表明,通过操纵或"挤压"造成量子噪声的状态,振荡器的稳定性可以得到改善,甚至突破其量子极限。麻省理工学院机械工程系助理教授维维谢克-苏迪尔(VivishekSudhir)说:"我们所展示的是,激光和时钟等振荡器的稳定性实际上是有极限的,这个极限不仅是由它们所处的环境设定的,也是量子力学迫使它们左右晃动的事实设定的。然后,我们已经证明,你甚至有办法绕过量子力学的晃动。但你必须更聪明,而不仅仅是把它与环境隔离开来,必须玩弄量子态本身。"研究小组正在对他们的理论进行实验测试。如果他们能证明可以操纵振荡系统中的量子态,研究人员设想可以将时钟、激光和其他振荡器调整到超量子精度。然后,这些系统就可以用来追踪时间上无限微小的差异,比如量子计算机中单个量子比特的波动,或者在探测器之间闪烁的暗物质粒子的存在。麻省理工学院物理系研究生哈德森-拉夫林(HudsonLoughlin)说:"我们计划在未来几年内展示几种具有量子增强计时能力的激光器。我们希望,我们最近的理论发展和即将进行的实验将推进我们精确计时的基本能力,并实现新的革命性技术。"Loughlin和Sudhir在《自然-通讯》(NatureCommunications)杂志上发表的一篇开放存取论文中详细介绍了他们的工作。激光精度在研究振荡器的稳定性时,研究人员首先研究了激光--一种能产生高度同步光子的波状光束的光学振荡器。激光的发明主要归功于物理学家阿瑟-肖洛(ArthurSchawlow)和查尔斯-汤斯(CharlesTownes)。激光器的设计以"发光介质"为中心,"发光介质"是原子的集合,通常镶嵌在玻璃或晶体中。在最早的激光器中,围绕着发光介质的闪光灯管会刺激原子中的电子跃升能量。当电子放松回到较低能量时,就会以光子的形式发出一些辐射。照明介质两端的两面镜子会将发出的光子反射回原子中,从而激发更多的电子,产生更多的光子。其中一面镜子与激光介质一起充当"放大器",促进光子的产生,而第二面镜子部分透射,充当"耦合器",将一些光子提取出来,形成一束集中的激光。自激光器发明以来,Schawlow和Townes提出了一个假设,即激光器的稳定性应受到量子噪声的限制。此后,其他人通过模拟激光的微观特征来验证他们的假设。通过非常具体的计算,他们表明,激光光子和原子之间难以察觉的量子相互作用确实会限制其振荡的稳定性。Sudhir指出:"但这项工作必须进行极其细致、微妙的计算,这样才能理解这种限制,但仅限于特定种类的激光。我们希望极大地简化这一过程,以了解激光器和各种振荡器。"“施加压力”研究小组并没有把重点放在激光错综复杂的物理特性上,而是致力于简化问题。"Sudhir解释说:"当电气工程师考虑制造振荡器时,他们会使用一个放大器,然后将放大器的输出馈入自己的输入端。这就像蛇吃自己的尾巴。这是一种极为自由的思维方式。你不需要了解激光的细枝末节。取而代之的是一幅抽象的图景,不仅是激光器的图景,也是所有振荡器的图景。"在他们的研究中,研究小组绘制了一幅类似激光振荡器的简化图。他们的模型由一个放大器(如激光的原子)、一条延迟线(例如,光在激光反射镜之间传播所需的时间)和一个耦合器(如部分反射镜)组成。研究小组随后写下了描述系统行为的物理方程,并进行了计算,以了解量子噪声会在系统的哪个位置出现。"通过将这一问题抽象为一个简单的振荡器,我们可以精确定位量子波动进入系统的位置,它们来自两个地方:放大器和使我们能够从振荡器中获得信号的耦合器,"Loughlin说。"如果我们知道了这两点,我们就知道了该振荡器稳定性的量子极限是多少"。科学家们可以利用他们在研究中列出的方程来计算自己振荡器的量子极限。更重要的是,研究小组证明,如果可以"挤压"两个信号源之一的量子噪声,就有可能克服这一量子极限。量子挤压是指以成比例地增加系统某一方面的量子波动为代价,使其最小化。这种效果类似于将气球中的空气从一部分挤入另一部分。在激光器中,研究小组发现,如果耦合器中的量子波动被挤压,就能提高输出激光束的精度或振荡时间,即使激光功率中的噪声会因此增加。"当你发现某种量子力学极限时,总会有这样一个问题:这种极限的可塑性有多大?"Sudhir说。"它真的是一个硬性的限制吗,或者说,通过操纵量子力学,你是否还能提取出一些果汁?在这种情况下,我们发现是有的,这是一个适用于一大类振荡器的结果。"...PC版:https://www.cnbeta.com.tw/articles/soft/1400943.htm手机版:https://m.cnbeta.com.tw/view/1400943.htm

封面图片

麻省理工学院为细胞打造“健身计划” 设计水凝胶“房”

麻省理工学院为细胞打造“健身计划”设计水凝胶“健身房”麻省理工学院的工程师设计了一种细胞锻炼垫,可以帮助科学家在微观层面上对运动的机械效应进行归零。研究结果表明,经常锻炼有助于肌肉纤维向同一方向生长。图片来源:EllaMarushchenko现在,麻省理工学院的工程师们设计出了一种细胞锻炼垫,它可以帮助科学家们在微观层面上对运动的纯机械效应进行归零。这种新设计与瑜伽垫并无太大区别:两者都是橡胶材质,有一定的伸缩性。就麻省理工学院的垫子而言,它是由水凝胶制成的,水凝胶是一种类似果冻的柔软材料,只有四分之一硬币大小,内嵌磁性微粒。为了激活凝胶的机械功能,研究人员在垫子下方使用了一块外部磁铁,来回移动嵌入的微粒,使凝胶像振动垫一样摇摆。他们控制着晃动的频率,以模拟肌肉在实际运动时所承受的力量。接下来,他们在凝胶表面培育了一层肌肉细胞地毯,并激活了磁铁的运动。然后,他们研究了细胞在受到磁力振动时对"运动"的反应。研究结果表明,定期的机械运动可以帮助肌肉纤维向同一方向生长。这些排列整齐的"锻炼"纤维还能同步工作或收缩。研究结果表明,科学家可以利用新的锻炼凝胶来塑造肌肉纤维的生长方式。该研究小组计划利用他们的新装置,将强健、功能性肌肉的薄片模型化,以用于软机器人和修复病变组织。拉曼左侧是研究生安吉尔-布,右侧是研究生布兰登-里奥斯。图片来源:亚当-格兰兹曼麻省理工学院工程设计布里特和亚历克斯-达贝洛夫职业发展教授里图-拉曼(RituRaman)说:"我们希望利用这个新平台来研究机械刺激是否有助于引导受伤后的肌肉再生或减轻衰老的影响。机械力在我们的身体和生活环境中扮演着非常重要的角色。现在我们有了一个研究工具"。她和同事们最近在《设备》(Device)杂志上发表了他们的研究成果。在麻省理工学院,拉曼的实验室设计用于医学和机器人学的自适应生命材料。该团队正在设计功能性神经肌肉系统,目的是恢复运动障碍患者的行动能力,并为柔软的适应性机器人提供动力。为了更好地了解天然肌肉和驱动其功能的力量,她的团队正在研究组织如何在细胞水平上对运动等各种力量做出反应。拉曼说:"在这里,我们想找到一种方法,将运动的两个主要因素--化学和机械--分离开来,看看肌肉是如何纯粹对运动的机械力做出反应的。"研究小组一直在寻找一种方法,让肌肉细胞定期、反复地受到机械力的作用,同时又不会在此过程中对它们造成物理损伤。他们最终选择了磁铁这种安全、无损的方式来产生机械力。对于他们的原型,研究人员首先将市售的磁性纳米粒子与橡胶硅溶液混合,制造出微米大小的小磁棒。他们将混合物固化成板坯,然后将板坯切成非常薄的条状。他们将四根磁棒夹在两层水凝胶(一种通常用于培养肌肉细胞的材料)之间,每根磁棒之间的间距稍大。最后得到的嵌入磁铁的垫子大约有四分之一硬币大小。然后,研究小组在垫子表面培养出"鹅卵石"状的肌肉细胞。每个细胞一开始都是圆形,随着时间的推移逐渐拉长,并与其他相邻细胞融合形成纤维。最后,研究人员在凝胶垫下的轨道上放置了一块外部磁铁,并设定磁铁来回移动的程序。嵌入的磁铁随之移动,使凝胶发生摆动,并产生与细胞在实际运动时类似的力。研究小组每天对细胞进行30分钟的机械"锻炼",持续了10天。作为对照,他们在相同的垫子上培养细胞,但让它们在没有运动的情况下生长。拉曼说:"然后,我们放大并拍摄了凝胶的照片,发现这些受到机械刺激的细胞看起来与对照组细胞截然不同。"研究小组的实验发现,与没有运动的细胞相比,经常暴露在机械运动中的肌肉细胞生长时间更长,而没有运动的细胞则倾向于保持圆形。更重要的是,"运动"过的细胞长出的纤维朝同一方向排列,而不运动的细胞则像杂乱无章的干草堆,纤维排列不整齐。研究小组在这项研究中使用的肌肉细胞是经过基因工程改造的,能在蓝光照射下收缩。通常情况下,人体内的肌肉细胞会在神经电脉冲的作用下收缩。然而,在实验室中对肌肉细胞进行电刺激可能会对它们造成潜在伤害,因此研究小组选择从基因上操纵这些细胞,使它们对非侵入性刺激(在本例中为蓝光)做出收缩反应。拉曼解释说:"当我们用光线照射肌肉时,你可以看到控制细胞在跳动,但有些纤维这样跳动,有些那样跳动,总体上产生了非常不同步的抽搐。而在排列整齐的纤维中,它们都同时朝着同一方向拉动和跳动"。她将这种新的锻炼凝胶命名为MagMA(磁性基质驱动),它可以作为一种快速、无创的方法来塑造肌肉纤维,并研究它们如何对运动做出反应。她还计划在这种凝胶上培养其他类型的细胞,以研究它们如何对定期锻炼做出反应。...PC版:https://www.cnbeta.com.tw/articles/soft/1396981.htm手机版:https://m.cnbeta.com.tw/view/1396981.htm

封面图片

麻省理工学院在将二维材料集成到设备方面取得突破

麻省理工学院在将二维材料集成到设备方面取得突破这幅艺术家的作品展示了麻省理工学院研究人员开发的一种新型集成平台。通过对表面力进行工程设计,他们只需一个接触和释放步骤,就能将二维材料直接集成到设备中。图片来源:SampsonWilcox/电子研究实验室提供但是,将二维材料集成到计算机芯片等设备和系统中是众所周知的难题。这些超薄结构可能会受到传统制造技术的破坏,这些技术通常依赖于使用化学品、高温或蚀刻等破坏性工艺。为了克服这一挑战,麻省理工学院和其他大学的研究人员开发出了一种新技术,只需一步就能将二维材料集成到设备中,同时保持材料表面和由此产生的界面原始无缺陷。他们的方法依赖于纳米级的工程表面力,使二维材料可以物理叠加到其他预制设备层上。由于二维材料不会受损,研究人员可以充分利用其独特的光学和电学特性。所开发的平台利用行业兼容的工具集,使这一过程可以扩展。在这里,主要作者彼得-萨特斯韦特(PeterSatterthwaite)使用MIT.nano中修改过的配准工具进行图案化配准集成。他们利用这种方法制造出了二维晶体管阵列,与使用传统制造技术制造出的器件相比,实现了新的功能。他们的方法用途广泛,可用于多种材料,可在高性能计算、传感和柔性电子器件等领域广泛应用。释放这些新功能的核心是形成清洁界面的能力,所有物质之间存在的特殊力量(称为范德华力)将这些界面连接在一起。电子工程与计算机科学(EECS)助理教授、电子学研究实验室(RLE)成员FarnazNiroui是介绍这项工作的新论文的资深作者。"范德华积分有一个基本限制,"她解释说,"由于这些作用力取决于材料的内在特性,因此无法轻易调整。因此,有些材料无法仅利用其范德华相互作用来直接相互整合。我们提出了一个解决这一限制的平台,以帮助范德华集成变得更加通用,从而促进具有新功能和改进功能的基于二维材料的设备的开发。"Niroui与论文第一作者、电子工程与计算机科学研究生PeterSatterthwaite,电子工程与计算机科学教授、RLE成员JingKong,以及麻省理工学院、波士顿大学、台湾国立清华大学、台湾国家科学技术委员会和台湾国立成功大学的其他人共同撰写了这篇论文,这项研究最近发表在《自然-电子学》上。纳米级表面力的多样性使研究人员能够将粘合剂基质转移到许多不同的材料上。例如,在这里,通过使用粘合聚合物,他们能够将图案化的石墨烯(一原子厚的碳薄片)从源基底(上图)转移到接收粘合聚合物(下图)上。图片来源:Niroui小组提供使用传统制造技术制造计算机芯片等复杂系统可能会变得一团糟。通常情况下,像硅这样的硬质材料会被凿成纳米级,然后与金属电极和绝缘层等其他元件连接,形成有源器件。这种加工过程会对材料造成损害。最近,研究人员专注于使用二维材料和一种需要连续物理堆叠的工艺,自下而上地构建设备和系统。在这种方法中,研究人员不是使用化学胶水或高温将脆弱的二维材料粘合到硅等传统表面上,而是利用范德华力将一层二维材料物理集成到设备上。范德华力是存在于所有物质之间的自然吸引力。例如,壁虎的脚会因为范德华力而暂时粘在墙上。虽然所有材料都存在范德华力,但根据材料的不同,范德华力并不总是强大到足以将它们粘在一起。例如,一种名为二硫化钼的流行半导体二维材料会粘在黄金上,但不会通过与二氧化硅等绝缘体表面的物理接触直接转移到该表面上。然而,通过整合半导体层和绝缘层制成的异质结构是电子设备的关键组成部分。以前,实现这种集成的方法是将二维材料粘合到一个中间层(如金)上,然后使用该中间层将二维材料转移到绝缘体上,最后再使用化学品或高温去除中间层。麻省理工学院的研究人员没有使用这种牺牲层,而是将低粘性绝缘体嵌入高粘性基质中。这种粘合基质使二维材料粘附在嵌入的低粘合力表面上,提供了在二维材料和绝缘体之间形成范德华界面所需的力。制作矩阵为了制造电子设备,他们在载体基底上形成金属和绝缘体的混合表面。然后将该表面剥离并翻转,就会看到一个完全光滑的顶面,其中包含所需的器件构件。这种光滑度非常重要,因为表面和二维材料之间的间隙会阻碍范德华相互作用。然后,研究人员在完全洁净的环境中单独制备二维材料,并将其与制备好的器件堆栈直接接触。"一旦混合表面与二维层接触,无需任何高温、溶剂或牺牲层,它就能拾取二维层并将其与表面整合在一起。"萨特斯韦特解释说:"通过这种方式,我们可以实现传统上被禁止的范德华集成,但现在却可以实现,而且只需一步就能形成功能齐全的器件。"这种单步工艺可使二维材料界面保持完全清洁,从而使材料达到其性能的基本极限,而不会受到缺陷或污染的影响。而且,由于二维材料的表面也保持原始状态,研究人员可以对二维材料的表面进行工程设计,以形成与其他元件的特征或连接。例如,他们利用这种技术制造出了p型晶体管,而利用二维材料制造这种晶体管通常是具有挑战性的。他们的晶体管在以前的研究基础上有所改进,可以为研究和实现实用电子产品所需的性能提供一个平台。展望未来他们的方法可以大规模地制造更大的装置阵列。粘合基质技术还可用于一系列材料,甚至与其他力量结合使用,以增强这一平台的多功能性。例如,研究人员将石墨烯集成到器件上,利用聚合物基质形成所需的范德华界面。在这种情况下,粘附依靠的是化学作用,而不仅仅是范德华力。未来,研究人员希望以此平台为基础,整合各种二维材料库,在不受加工损伤影响的情况下研究其内在特性,并利用这些卓越功能开发新的设备平台。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423078.htm手机版:https://m.cnbeta.com.tw/view/1423078.htm

封面图片

麻省理工学院团队提出从海水而非空气中直接捕获碳的方法

麻省理工学院团队提出从海水而非空气中直接捕获碳的方法根据国际能源署2022年的数据,即使是更有效的空气捕集技术也需要大约6.6千兆焦耳的能量,或者说每捕集一吨二氧化碳需要1.83兆瓦时。这些能源中的大部分并不是用来直接从空气中分离二氧化碳,而是用来保持吸收器的工作温度的热能,或者用来压缩大量空气的电能,以便能够有效地进行捕获操作。但无论如何,成本都是无法控制的,2030年每吨的价格估计在300-1000美元之间。根据Statista的数据,目前地球上没有一个国家愿意向碳排放者征收哪怕是较低估计值的一半的税;排名第一的乌拉圭的税率为137美元/吨。除非其成本大幅下降,否则直接空气捕集将无法作为一项有效的业务运作。事实证明还有一个选择:海水。随着大气中碳浓度的上升,二氧化碳开始溶入海水。目前,海洋吸收了人类每年所有碳排放量的30-40%,并与空气保持着持续的自由交换。把碳从海水中吸出来,它就会从空气中吸出更多的碳来重新平衡浓度。最重要的是,海水中的二氧化碳浓度是空气中的100多倍。以前的研究团队已经设法从海水中释放二氧化碳并将其捕获,但他们的方法需要昂贵的膜和不断供应的化学品来保持反应的进行。另一方面,麻省理工学院的团队已经宣布成功地测试了一个系统,该系统既不使用这两种物质,又需要比空气捕获方法少得多的能量。左图:该设备的示意图。中间:优化电流密度和电极间隙。右图:高效电化学电池的成本分解。在新系统中,海水通过两个腔室。第一个使用活性电极将质子释放到海水中,使水酸化,将溶解的无机重碳酸盐变成二氧化碳气体,二氧化碳气体冒出并被真空收集。然后,水被推送到第二组具有反向电压的电池中,将这些质子唤回,并在将其释放回海中之前将酸性水转为碱性。定期地,当活性电极上的质子被耗尽时,电压的极性被逆转,同样的反应继续进行,水向相反的方向流动。在一份发表在同行评议杂志《能源与环境科学》上的新研究中,该团队称其技术需要122千焦/摩尔的能量输入,根据计算相当于每吨0.77兆瓦时,而且该团队相信它可以做得更好。"尽管我们的基础能量消耗为122千焦/摩尔-二氧化碳,是一个创纪录的低值,"研究报告中写道,"它仍然可以朝着32千焦/摩尔-二氧化碳的热力学极限大幅下降。"该团队预测,每吨二氧化碳的优化成本约为56美元--尽管直接与全系统直接空气捕集成本进行比较并不公平。该研究警告说,这不包括真空脱气、过滤和"电化学系统之外的辅助成本"--对这些成本的分析将必须单独进行。然而,其中一些成本有可能通过将碳捕集装置与其他设施(例如已经在处理大量海水的海水淡化厂)整合而得到缓解。该系统可以与任何现有的处理海水的基础设施相结合,如海水淡化厂还有一些其他的好处;近年来,海洋中的碳积聚增加已经造成了酸化问题,威胁到了珊瑚礁和贝类。这个过程的碱性输出,如果直接用于需要的地方,可以帮助纠正生态平衡。该团队计划在未来两年的某个时候开展一个实际的示范项目,并表示有很多事情仍然需要努力。首先,研究人员希望能够在没有真空系统的情况下将气体分离出来。矿物沉淀物在碱化一侧的电极上结垢,所以还有很多进展要做。该研究结论刊登在《能源与环境科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1344915.htm手机版:https://m.cnbeta.com.tw/view/1344915.htm

封面图片

麻省理工学院首次控制量子随机性

麻省理工学院首次控制量子随机性想象一下,平静的海面突然起了波浪--这与量子层面的真空中发生的情况类似。在此之前,科学家们已经利用这些波动生成了随机数。它们也是量子科学家在过去一百年中发现的许多迷人现象的原因。利用真空波动生成可调谐随机数的实验装置。图片来源:CharlesRoques-Carmes、YannickSalamin麻省理工学院博士后CharlesRoques-Carmes和YannickSalamin、麻省理工学院教授MarinSoljačić和JohnJoannopoulos及其同事最近在《科学》(Science)杂志上发表了一篇论文,对上述发现进行了描述。传统上,计算机以确定性的方式运行,按照一系列预定义的规则和算法逐步执行指令。在这种模式下,如果多次运行相同的操作,总会得到完全相同的结果。这种确定性方法为我们的数字时代打下了基础,但也有其局限性,尤其是在模拟物理世界或优化复杂系统时,这些任务往往涉及大量的不确定性和随机性。从量子真空中生成可调随机数的艺术插图。图片来源:陈磊这就是概率计算概念发挥作用的地方。概率计算系统利用某些过程的内在随机性来执行计算。它们不会只提供一个"正确"的答案,而是提供一系列可能的结果,每个结果都有其相关的概率。这使它们非常适合模拟物理现象和解决优化问题,因为在这些问题中可能存在多种解决方案,而对各种可能性的探索可以找到更好的解决方案。工作的主要作者之一CharlesRoques-Carmes博士正在操作实验系统。图片来源:AnthonyTulliani然而,概率计算的实际应用在历史上一直受到一个重大障碍的阻碍:缺乏对量子随机性相关概率分布的控制。不过,麻省理工学院团队开展的研究揭示了一种可能的解决方案。具体来说,研究人员已经证明,向光学参量振荡器(一种自然生成随机数的光学系统)注入微弱的激光"偏压",可以作为"偏压"量子随机性的可控源。"尽管对这些量子系统进行了广泛的研究,但非常微弱的偏置场的影响尚未得到探索,"该研究的研究员CharlesRoques-Carmes说。"我们发现的可控量子随机性不仅让我们能够重新审视量子光学中已有几十年历史的概念,而且还为概率计算和超精确场传感开辟了潜力。"该团队成功展示了操纵与光参量振荡器输出状态相关的概率的能力,从而创造了有史以来第一个可控光子概率位(p-bit)。此外,该系统还显示出对偏置场脉冲时间振荡的敏感性,甚至远低于单光子水平。工作的主要作者之一YannickSalamin博士正在操作实验系统。资料来源:AllysonMacBasino团队另一位成员YannickSalamin说:"我们的光子p比特生成系统目前可以每秒生成10,000个比特,每个比特都可以遵循任意的二项分布。我们预计,这项技术将在未来几年不断发展,从而产生更高速率的光子p位,并实现更广泛的应用。"麻省理工学院的MarinSoljačić教授强调了这项工作的广泛意义:"通过使真空波动成为可控元素,我们正在推动量子增强概率计算的发展。在组合优化和晶格量子色动力学模拟等领域模拟复杂动力学的前景非常令人兴奋"。...PC版:https://www.cnbeta.com.tw/articles/soft/1382749.htm手机版:https://m.cnbeta.com.tw/view/1382749.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人