在量子系统的动力学中发现的宇宙物理学

在量子系统的动力学中发现的宇宙物理学用超冷原子气体进行的新实验揭示了所有相互作用的量子系统在突然的能量涌入后是如何演变的。“上个世纪物理学的许多重大进展都与具有许多粒子的量子系统的行为有关,”宾夕法尼亚州立大学杰出物理学教授、研究团队的领导者之一戴维·韦斯(DavidWeiss)说。“尽管存在各种各样的‘多体’现象,如超导性、超流性和磁性,但人们发现它们在接近平衡状态时的行为通常足够相似,以至于可以将它们分类为一小组通用类别。相比之下,远离平衡的系统的行为几乎没有产生这样的统一描述。”超冷原子气体的新实验揭示了量子系统动力学中的普遍物理学。宾夕法尼亚州立大学研究生袁乐是描述实验的论文的第一作者,她站在她用来创造和研究接近绝对零的一维气体的设备旁边。图片来源:大卫·韦斯,宾夕法尼亚州立大学韦斯解释说,这些量子多体系统是粒子的集合,例如原子,它们可以相对于彼此自由移动。当它们是足够稠密和足够冷的组合时(这可能会根据环境而变化),需要量子力学(在原子或亚原子尺度上描述自然属性的基本理论)来描述它们的动力学。当成对的重离子以接近光速的速度碰撞时,粒子加速器中通常会产生严重失衡的系统。碰撞产生等离子体——由亚原子粒子“夸克”和“胶子”组成——在碰撞的早期就出现,可以用流体动力学理论来描述——类似于在等离子体达到局部热平衡之前用于描述气流或其他移动流体的经典理论。但在流体动力学理论得以应用之前的极短时间内会发生什么呢?“在使用流体动力学之前发生的物理过程被称为‘水动力化’,”宾夕法尼亚州立大学物理学教授、该研究小组的另一位领导者马科斯·里戈尔(MarcosRigol)说。“已经发展了许多理论来试图理解这些碰撞中的水动力作用,但情况相当复杂,不可能像粒子加速器实验中那样实际观察到它。使用冷原子,我们可以观察氢动力化过程中发生的情况。”宾夕法尼亚州立大学的研究人员利用一维气体的两个特殊特征,即通过激光捕获并冷却到接近绝对零的气体,以了解系统在失去平衡后但在流体动力学能够实现之前的演化。 第一个功能是实验性的。实验中的相互作用可以在能量流入后的任何时刻突然关闭,因此可以直接观察和测量系统的演化。具体来说,他们观察了能量突然淬灭后一维动量分布的时间演化。韦斯说:“激光制成的陷阱中的超冷原子可以进行如此精确的控制和测量,从而真正为多体物理学带来启示。令人惊奇的是,表征相对论性重离子碰撞(实验室中发生的一些最高能碰撞)的相同基本物理特性,也出现在我们实验室中发生的能量低得多的碰撞中。”第二个特征是理论上的。以复杂方式相互作用的粒子集合可以被描述为相互相互作用要简单得多的“准粒子”集合。与大多数系统不同,一维气体的准粒子描述在数学上是精确的。它可以非常清楚地描述为什么能量在失去平衡后会在系统中快速重新分配。“这些一维气体中已知的物理定律,包括守恒定律,意味着一旦这种初始演化发生,流体动力学描述将是准确的,”里戈尔说。“实验表明,这种情况发生在达到局部平衡之前。因此,实验和理论一起提供了水动力化的模型实例。由于水动力化发生得如此之快,因此对准粒子的基本理解可以应用于任何添加了大量能量的多体量子系统。”...PC版:https://www.cnbeta.com.tw/articles/soft/1366927.htm手机版:https://m.cnbeta.com.tw/view/1366927.htm

相关推荐

封面图片

物理学家成功模拟相互作用量子粒子系统中的超级扩散

物理学家成功模拟相互作用量子粒子系统中的超级扩散这项工作是TCD-IBM博士前奖学金项目的首批成果之一,该项目是最近设立的,IBM在三一学院联合指导博士生的同时,还聘用博士生作为员工。该论文最近发表在著名的《自然》杂志《NPJ量子信息》上。IBM是令人兴奋的量子计算领域的全球领导者。这项研究中使用的早期量子计算机由27个超导量子比特组成(量子比特是量子逻辑的构件),物理上位于IBM位于纽约约克城高地的实验室内,并在都柏林进行远程编程。量子计算是目前最令人兴奋的技术之一,预计在未来十年内将逐渐接近商业应用。除了商业应用,量子计算机还能帮助解决一些令人着迷的基本问题。都柏林圣三一大学和IBM的团队就解决了这样一个有关量子模拟的问题。新成立的圣三一量子联盟(TrinityQuantumAlliance)主任约翰-戈尔德(JohnGoold)教授是这项研究的负责人,他在解释这项工作的意义和量子模拟的总体理念时说"一般来说,模拟由许多相互作用的成分组成的复杂量子系统的动力学问题,对传统计算机来说是一项艰巨的挑战。考虑到这一特定设备上的27个量子位。在量子力学中,这样一个系统的状态是由一个称为波函数的对象来进行数学描述的。要使用标准计算机来描述这个对象,就需要在内存中存储大量的系数,而这些系数的需求是随着量子比特数量的增加而呈指数级增长的;在这个模拟案例中,大约需要1.34亿个系数。""当系统增长到300个比特时,要描述这样一个系统,所需的系数将超过可观测宇宙中的原子数量,而任何经典计算机都无法精确捕捉系统的状态。换句话说,我们在模拟量子系统时会碰壁。使用量子系统模拟量子动力学的想法可以追溯到美国诺贝尔物理学奖得主理查德-费曼,他提出量子系统最好使用量子系统模拟。原因很简单--你自然会利用量子计算机是由波函数描述的这一事实,从而规避了存储状态所需的指数级经典资源"。那么,研究小组究竟模拟了什么呢?Goold教授继续介绍说:"一些最简单的非三维量子系统是自旋链。这些系统由被称为自旋的小磁体连接而成,模仿更复杂的材料,用于理解磁性。我们对一种叫做海森堡链的模型很感兴趣,尤其对自旋激发如何在整个系统中传输的长时间行为感兴趣。在这种长时限制下,量子多体系统进入流体力学体系,传输由描述经典流体的方程来描述。""我们对一种特殊的机制很感兴趣,在这种机制中,由于基础物理学受卡尔达-帕里斯-张方程(Kardar-Parisi-Zhangequation)的支配,会出现一种叫做超扩散的现象。该方程通常描述表面或界面的随机增长,如暴风雪中雪的高度如何增长,咖啡杯在布上的污渍如何随时间增长,或绒毛火如何增长。这种传播被称为超扩散传输。这种传输会随着系统规模的增大而变得越来越快。令人惊奇的是,量子动力学中也出现了支配这些现象的方程,我们能够利用量子计算机来验证这一点。这是这项工作的主要成就。"IBM-Trinity博士前期学者内森-基南(NathanKeenan)是该项目的编程人员,他向我们讲述了量子计算机编程所面临的一些挑战。他说:"量子计算机编程的最大问题是在存在噪声的情况下进行有用的计算。在芯片级执行的运算并不完美,而且计算机对来自实验室环境的干扰非常敏感。因此,总是希望尽量缩短有用程序的运行时间,因为这将缩短这些错误和干扰发生并影响结果的时间。"IBM英国和爱尔兰研究院院长胡安-贝尔纳贝-莫雷诺(JuanBernabé-Moreno)说:"IBM在推动量子计算技术方面有着悠久的历史,不仅带来了数十年的研究成果,还提供了最大、最广泛的商业量子计划和生态系统。我们与都柏林圣三一学院通过量子科学与技术硕士和博士项目开展的合作就体现了这一点,我很高兴这项合作已经取得了可喜的成果。"随着世界进入量子模拟的新时代,令人欣慰的是,都柏林圣三一学院的量子物理学家站在最前沿--为未来的设备编程。量子模拟是由约翰-古尔德(JohnGoold)教授创立并领导的新成立的三位一体量子联盟的核心研究支柱,该联盟拥有五家创始工业合作伙伴,包括IBM、微软、Algorithmiq、Horizon和MoodysAnalytics。...PC版:https://www.cnbeta.com.tw/articles/soft/1388299.htm手机版:https://m.cnbeta.com.tw/view/1388299.htm

封面图片

钻石的隐藏潜力:物理学家释放不完美晶体的量子能量

钻石的隐藏潜力:物理学家释放不完美晶体的量子能量外场驱动钻石内的量子粒子,创造出长寿命量子系统。资料来源:圣路易斯华盛顿大学该论文的共同作者包括物理学教授凯特-默奇(KaterMurch)、博士生何光辉、龚若天(Ruotian(Reginald)Gong)和刘中原。他们的工作得到了量子跃迁中心(CenterforQuantumLeaps)的部分支持。量子跃迁中心是艺术与科学战略计划的一个标志性倡议,旨在将量子见解和技术应用于物理学、生物医学和生命科学、药物发现以及其他意义深远的领域。研究人员用氮原子轰击钻石,使其发生转变。其中一些氮原子会移位碳原子,从而在原本完美的晶体中产生缺陷。由此产生的空隙中充满了电子,这些电子具有自旋和磁性,其量子特性可被测量和操纵,应用范围十分广泛。正如Zu和他的团队之前通过对硼的研究揭示的那样,这种缺陷有可能被用作量子传感器,对周围环境和彼此间的环境做出反应。在新的研究中,研究人员关注的是另一种可能性:利用不完美的晶体来研究无比复杂的量子世界。经典计算机(包括最先进的超级计算机)不足以模拟量子系统,即使是只有十几个量子粒子的系统。这是因为每增加一个粒子,量子空间的维度就会呈指数增长。但新研究表明,使用可控量子系统直接模拟复杂的量子动力学是可行的。Zu说:"我们精心设计我们的量子系统,创建一个模拟程序并让它运行。最后,我们观察结果。这是使用经典计算机几乎不可能解决的问题。"研究小组在这一领域取得的进展将有助于研究多体量子物理学中一些最令人兴奋的方面,包括实现物质的新阶段和预测复杂量子系统的突发现象。在最新的研究中,Zu和他的团队能够让他们的系统保持稳定长达10毫秒,这在量子世界中是很长的一段时间。值得注意的是,与其他在超低温条件下运行的量子模拟系统不同,他们的钻石系统是在室温条件下运行的。保持量子系统完好无损的关键之一是防止热化,即系统吸收大量能量后,所有缺陷都会失去其独特的量子特征,最终看起来一模一样。研究小组发现,他们可以通过快速驱动系统,使其来不及吸收能量,从而推迟这一结果的发生。这使得系统处于相对稳定的"预热"状态。这种基于钻石的新系统使物理学家能够同时研究多个量子区域的相互作用。它还为制造灵敏度越来越高的量子传感器提供了可能。"量子系统存在的时间越长,灵敏度就越高,"Zu说。Zu和他的团队目前正在与量子跃迁中心的其他华盛顿大学科学家合作,以获得跨学科的新见解。在艺术与科学领域,Zu正与物理学副教授ErikHenriksen合作,以提高传感器的性能。他还计划利用它们来更好地理解物理学助理教授盛然实验室创造的量子材料。他还与地球、环境和行星科学教授菲利普-斯基默(PhilipSkemer)合作,从原子层面观察岩石样本中的磁场;并与物理学助理教授尚卡尔-穆克吉(ShankarMukherji)合作,对活生物细胞中的热力学进行成像。...PC版:https://www.cnbeta.com.tw/articles/soft/1388713.htm手机版:https://m.cnbeta.com.tw/view/1388713.htm

封面图片

物理学家实现分子的量子纠缠

物理学家实现分子的量子纠缠物理学家首次实现了对分子的量子纠缠。这一突破可能有助于推动量子计算的实用化。论文发表在《科学》期刊上。实现可控的量子纠缠一直是一大挑战,这次实验之前分子的可控量子纠缠一直无法实现。普林斯顿大学的物理学家找到了方法控制单个分子诱导其进入到互锁量子态。研究人员相信相比原子,分子具有优势,更适合量子信息处理和复杂材料量子模拟等应用。相比原子,分子有更多的量子自由度,能以新方式交互。论文合作者YukaiLu指出这意味着存储和处理量子信息的新方法。来源,,频道:@kejiqu群组:@kejiquchat

封面图片

物理学家观测到“不可观测”的量子相变

物理学家观测到“不可观测”的量子相变1935年,两位当时最著名的物理学家爱因斯坦和薛定谔就现实本质产生了争论。爱因斯坦认为宇宙是局域性的,一个地方发生的事情不会立即影响遥远的另一个地方。薛定谔认为量子纠缠与局域性的假设相悖。当一对粒子发生纠缠时,测量其中一个粒子会立即影响到另一个粒子,无论它身在何处。这违背了爱因斯坦关于传播速度无法超越光速的铁令。爱因斯坦不喜欢不受范围限制的纠缠,他将其称之为幽灵,认为量子力学理论是不完整的。今天的物理学家基本上解决了该问题,纠缠不会在遥远的地方产生立即的影响,它无法在遥远距离上实现特定结果:它只是传播该结果的知识。过去几年一系列的理论和实验研究揭示了纠缠的新面孔:它不是成对出现,而是以粒子星图的形式出现。纠缠通过一组粒子自然传播,建立了一个复杂的临时网。如果你测量粒子的频率足够多,你能阻止网的形成。这种网状非网状的状态令人想起物质的液态固态。网状与非网状的转变代表着信息结构的变化,这是信息的相变。来源,频道:@kejiqu群组:@kejiquchat

封面图片

BNL物理学家发现了一种全新的量子纠缠类型

BNL物理学家发现了一种全新的量子纠缠类型一对粒子可以变得如此相互纠缠,以至于无论它们之间的距离有多远,都不能脱离另一个来描述。更奇怪的是,改变一个粒子会立即引发其伙伴的变化,即使它在宇宙的另一端。这个被称为量子纠缠的想法对我们来说是不可能的,因为我们是在经典物理学的领域里。甚至爱因斯坦也对此感到不安,将其称为"远距离的幽灵行动"。然而,几十年来的实验一直支持它,它构成了量子计算机和网络等新兴技术的基础。通常情况下,对量子纠缠的观察是在性质相同的一对光子或电子之间进行的。但现在,BNL团队首次检测到了一对正在进行量子纠缠的不同粒子。这一发现是在布鲁克海文实验室的相对论重离子对撞机(RHIC)中进行的,该对撞机通过加速和粉碎金离子来探测早期宇宙中存在的物质形式。但研究小组发现,即使在离子没有碰撞的情况下,也有很多东西可以从近距离的碰撞中学习。布鲁克海文实验室相对论重离子对撞机中的探测器,在这里发现了一种新型的量子纠缠加速的金离子被小的光子云所包围,当两个离子相互靠近时,其中一个的光子可以捕捉到另一个内部结构的图像,比以往任何时候都更详细。这一点对物理学家来说就足够吸引人了,但这只能发生在一种前所未有的量子纠缠形式下。光子与每个离子核内的基本粒子相互作用,引发了一个级联,最终产生了一对叫做"离子"的粒子,一个是正的,一个是负的。正如你可能记得的高中物理,一些粒子也可以被描述为波,在这种情况下,来自两个负离子的波相互加强,而来自两个正离子的波则相互加强。这推动了研究人员打造出只有一个正离子和一个负离子的波函数撞击检测器。这表明每一对正负离子都是相互纠缠在一起的。该团队说,如果它们不是这样,撞击探测器的波函数将是完全随机的。因此,这是首次探测到不同粒子的量子纠缠。一张图说明了新发现的量子纠缠类型是如何被检测到的。黄色的圆圈是金离子,蓝色和粉色的圆圈分别是正离子和负离子。来自每个离子的电波加强了来自另一个离子的相同离子的电波,因此它们以两个强烈的信号击中了检测器,在图像的顶部被视为蓝色和粉红色电波的集中。这只有在来自每个离子的正负离子以一种以前未曾见过的形式进行量子纠缠时才能起作用。说明新发现的量子纠缠类型是如何被检测到的图表。黄色的圆圈是金离子,蓝色和粉红色的圆圈分别是正离子和负离子。来自每个离子的电波加强了来自另一个离子的同一质子的电波,因此它们以两个强烈的信号击中了检测器,在图像的顶部被视为蓝色和粉红色电波的集中。这只有在每个离子的正负离子是量子纠缠的情况下才能起作用,其形式是以前没有见过的。图像来源/布鲁克海文国家实验室"我们测量两个流出的粒子,显然它们携带的电荷是不同的,证明它们是不同的粒子,但是我们又看到了干扰模式,表明这些粒子是纠缠在一起的,或者说是彼此同步的,尽管它们是可区分的粒子,"该研究的作者ZhangbuXu说。除了扩大我们对量子物理学的理解外,这一发现还能带来新的技术,比如该团队一直在使用的窥视金离子核内部的方法。该研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1337873.htm手机版:https://m.cnbeta.com.tw/view/1337873.htm

封面图片

华南师大物理学院量子计算团队发表重要研究成果

华南师大物理学院量子计算团队发表重要研究成果华南师大物理学院今日官微消息,近期,华南师大物理学院/原子亚原子结构与量子调控教育部重点实验室/广东省高等学校物质结构与相互作用基础研究卓越中心/广东省量子调控工程与材料重点实验室/粤港量子物质联合实验室薛正远研究员、颜辉教授和朱诗亮教授团队在量子计量研究中取得重要研究进展:在超导电路中实验实现超高精度的哈密顿参数估计。该研究成果于6月18日发表在物理学国际顶级期刊《PhysicalReviewLetters》上。据悉,团队在超导电路中通过实验证明了超高精度的哈密顿参数估计,超导Transmon量子比特具有相干时间长、微波控制简单、读出高保真等优点,为高精度测量提供了良好的实验平台。另外,团队进一步在超导电路中证明了极性和方位角的哈密顿参数估计,其测量精度超过标准量子极限16.0dB,实现了超高的量子计量增益。团队的工作为超导电路在量子计量领域的发展开辟了一条新的途径。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人