钻石的隐藏潜力:物理学家释放不完美晶体的量子能量

钻石的隐藏潜力:物理学家释放不完美晶体的量子能量外场驱动钻石内的量子粒子,创造出长寿命量子系统。资料来源:圣路易斯华盛顿大学该论文的共同作者包括物理学教授凯特-默奇(KaterMurch)、博士生何光辉、龚若天(Ruotian(Reginald)Gong)和刘中原。他们的工作得到了量子跃迁中心(CenterforQuantumLeaps)的部分支持。量子跃迁中心是艺术与科学战略计划的一个标志性倡议,旨在将量子见解和技术应用于物理学、生物医学和生命科学、药物发现以及其他意义深远的领域。研究人员用氮原子轰击钻石,使其发生转变。其中一些氮原子会移位碳原子,从而在原本完美的晶体中产生缺陷。由此产生的空隙中充满了电子,这些电子具有自旋和磁性,其量子特性可被测量和操纵,应用范围十分广泛。正如Zu和他的团队之前通过对硼的研究揭示的那样,这种缺陷有可能被用作量子传感器,对周围环境和彼此间的环境做出反应。在新的研究中,研究人员关注的是另一种可能性:利用不完美的晶体来研究无比复杂的量子世界。经典计算机(包括最先进的超级计算机)不足以模拟量子系统,即使是只有十几个量子粒子的系统。这是因为每增加一个粒子,量子空间的维度就会呈指数增长。但新研究表明,使用可控量子系统直接模拟复杂的量子动力学是可行的。Zu说:"我们精心设计我们的量子系统,创建一个模拟程序并让它运行。最后,我们观察结果。这是使用经典计算机几乎不可能解决的问题。"研究小组在这一领域取得的进展将有助于研究多体量子物理学中一些最令人兴奋的方面,包括实现物质的新阶段和预测复杂量子系统的突发现象。在最新的研究中,Zu和他的团队能够让他们的系统保持稳定长达10毫秒,这在量子世界中是很长的一段时间。值得注意的是,与其他在超低温条件下运行的量子模拟系统不同,他们的钻石系统是在室温条件下运行的。保持量子系统完好无损的关键之一是防止热化,即系统吸收大量能量后,所有缺陷都会失去其独特的量子特征,最终看起来一模一样。研究小组发现,他们可以通过快速驱动系统,使其来不及吸收能量,从而推迟这一结果的发生。这使得系统处于相对稳定的"预热"状态。这种基于钻石的新系统使物理学家能够同时研究多个量子区域的相互作用。它还为制造灵敏度越来越高的量子传感器提供了可能。"量子系统存在的时间越长,灵敏度就越高,"Zu说。Zu和他的团队目前正在与量子跃迁中心的其他华盛顿大学科学家合作,以获得跨学科的新见解。在艺术与科学领域,Zu正与物理学副教授ErikHenriksen合作,以提高传感器的性能。他还计划利用它们来更好地理解物理学助理教授盛然实验室创造的量子材料。他还与地球、环境和行星科学教授菲利普-斯基默(PhilipSkemer)合作,从原子层面观察岩石样本中的磁场;并与物理学助理教授尚卡尔-穆克吉(ShankarMukherji)合作,对活生物细胞中的热力学进行成像。...PC版:https://www.cnbeta.com.tw/articles/soft/1388713.htm手机版:https://m.cnbeta.com.tw/view/1388713.htm

相关推荐

封面图片

物理学家实现分子的量子纠缠

物理学家实现分子的量子纠缠物理学家首次实现了对分子的量子纠缠。这一突破可能有助于推动量子计算的实用化。论文发表在《科学》期刊上。实现可控的量子纠缠一直是一大挑战,这次实验之前分子的可控量子纠缠一直无法实现。普林斯顿大学的物理学家找到了方法控制单个分子诱导其进入到互锁量子态。研究人员相信相比原子,分子具有优势,更适合量子信息处理和复杂材料量子模拟等应用。相比原子,分子有更多的量子自由度,能以新方式交互。论文合作者YukaiLu指出这意味着存储和处理量子信息的新方法。来源,,频道:@kejiqu群组:@kejiquchat

封面图片

物理学家成功连接了两个量子物理学的子领域

物理学家成功连接了两个量子物理学的子领域莱斯大学的物理学家已经证明,量子计算所高度追求的不可变拓扑态可以与某些材料中其他可操纵的量子态纠缠在一起。“我们发现令人惊讶的事情是,在一种特殊的晶格中,电子被困住,d原子轨道中电子的强耦合行为实际上就像一些重费米子的f轨道系统一样,”《科学进展》相关研究报告的作者说。这一意想不到的发现为凝聚态物理学的子领域之间架起了一座桥梁,这些子领域专注于量子材料的不同涌现特性。例如,在拓扑材料中,量子纠缠模式产生“受保护的”、不可变的状态,可用于量子计算和自旋电子学。在强关联材料中,数十亿个电子的纠缠会产生非常规超导性和量子自旋液体中持续磁涨落等行为。在这项研究中,斯奇苗和合著者胡浩宇(他的研究小组的前研究生)建立并测试了一个量子模型,以探索“受挫”晶格排列中的电子耦合,就像在具有“平带”特征的金属和半金属中发现的电子耦合,表明电子被卡住并且强相关效应被放大。斯奇苗是莱斯大学物理和天文学HarryC.和OlgaK.Wiess教授,也是莱斯大学量子材料中心主任。图片来源:JeffFitlow/莱斯大学这项研究是斯奇苗持续努力的一部分,他于7月获得了美国国防部著名的万尼瓦尔·布什教员奖学金,以验证控制物质拓扑状态的理论框架。在这项研究中,斯奇苗和胡浩宇表明,来自d原子轨道的电子可以成为晶格中多个原子共享的更大分子轨道的一部分。研究还表明,分子轨道中的电子可能与其他受挫电子纠缠在一起,产生强相关效应,这对于多年来研究重费米子材料的Si来说非常熟悉。“这些完全是d电子系统,”斯奇苗说。“在d电子世界中,就像有一条多车道的高速公路。在f电子世界中,您可以认为电子在两层中移动。一种就像d电子高速公路,另一种就像土路,移动速度非常慢。”Si表示,f电子系统拥有非常清晰的强相关物理例子,但它们并不适合日常使用。“这条土路距离高速公路太远了,”他说。“高速公路的影响非常小,这意味着微小的能量尺度和非常低的物理温度。这意味着需要达到10开尔文左右的温度才能看到耦合的效果。在d电子世界中情况并非如此。在多车道高速公路上,事物之间的耦合非常有效。”即使频带平坦,耦合效率仍然存在。斯将其比作高速公路的一条车道变得像f电子土路一样低效且缓慢。“即使它已经变成了土路,它仍然与其他车道共享地位,因为它们都来自d轨道,”斯说。“它实际上是一条土路,但它的耦合性更强,这转化为更高温度下的物理现象。这意味着我可以拥有所有基于f电子的精致物理学,为此我拥有明确定义的模型和多年研究的大量直觉,但我不必达到10开尔文,而是可以工作例如,200开尔文,甚至可能是300开尔文,或室温。因此,从功能角度来看,它非常有前途。”...PC版:https://www.cnbeta.com.tw/articles/soft/1389679.htm手机版:https://m.cnbeta.com.tw/view/1389679.htm

封面图片

物理学家利用振动来防止量子计算中的信息丢失

物理学家利用振动来防止量子计算中的信息丢失密歇根州立大学的研究人员发现了如何利用振动(通常是量子计算中的障碍)作为稳定量子态的工具。他们的研究为控制量子系统中的环境因素提供了见解,并对量子技术的发展产生了影响。当量子系统(如量子计算机中使用的量子系统)在现实世界中运行时,它们可能会因机械振动而丢失信息。然而,由密歇根州立大学领导的新研究表明,更好地理解量子系统与这些振动之间的耦合关系可以用来减少损失。这项发表在《自然-通讯》(NatureCommunications)杂志上的研究可以帮助改进IBM和Google等公司目前正在开发的量子计算机的设计。振动问题密歇根州立大学博士生乔-基茨曼(JoeKitzman)说:"每个人都对建造量子计算机来回答真正困难和重要的问题感到非常兴奋。但振动激发真的会把量子处理器搞得一团糟。"然而,通过发表在《自然-通讯》(NatureCommunications)杂志上的新研究,基茨曼和他的同事们表明,这些振动并不一定是阻碍。事实上,它们可能有利于量子技术。"如果我们能够理解振动是如何与我们的系统耦合的,我们就可以将其作为一种资源和工具,用于创建和稳定某些类型的量子态,"基茨曼说。量子技术的好处这意味着研究人员可以利用这些成果帮助减少量子比特或量子比特(读作"qbits")丢失的信息。传统计算机依赖于清晰的二进制逻辑。比特以两种不同的可能状态之一(通常表示为0或1)来编码信息。而Qubits则更加灵活,可以同时存在于0和1两种状态。虽然这听起来像是作弊,但它完全符合量子力学的规则。尽管如此,在解决科学、金融和网络安全等多个领域的某些问题时,量子计算机的这一特性应该会比传统计算机更具优势。进一步的影响和实验除了对量子技术的影响,MSU领导的团队的报告还有助于为未来的实验奠定基础,以便更好地探索量子系统。MSU物理与天文学系杰里-考恩物理学捐赠讲座教授约翰内斯-波拉南(JohannesPollanen)说:"理想情况下,想把你的系统与环境分开,但环境始终存在。它几乎就像你不想处理的垃圾,但当你处理它时,你可以了解量子世界的各种精彩元素。"量子系统和新兴技术Pollanen还领导着自然科学学院的混合量子系统实验室,Kitzman也是该实验室的成员之一。在Pollanen和Kitzman领导的实验中,研究小组建立了一个由超导量子比特和所谓的表面声波谐振器组成的系统。这些量子比特是开发量子计算机的公司中最受欢迎的品种之一。机械谐振器用于许多现代通信设备,包括手机和车库门开启器,而现在,像波拉宁这样的研究小组正在将它们用于新兴的量子技术。研究小组的谐振器使研究人员能够调整量子比特所经历的振动,并了解两者之间的机械相互作用如何影响量子信息的保真度。Pollanen说:"我们正在创建一个范例系统,以了解这种信息是如何被扰乱的。我们可以控制环境,在这种情况下,可以控制谐振器中的机械振动,也可以控制量子位"。"如果你能了解这些环境损耗是如何影响系统的,你就可以利用这一点,"基茨曼说。"解决问题的第一步就是了解问题"。Pollanen说,MSU是仅有的几个有设备和人员在这些耦合量子比特-机械谐振器装置上进行实验的地方之一,研究人员很高兴能利用他们的系统进行进一步的探索。...PC版:https://www.cnbeta.com.tw/articles/soft/1378577.htm手机版:https://m.cnbeta.com.tw/view/1378577.htm

封面图片

打破二进制:物理学家将两个量子数字完全纠缠在一起

打破二进制:物理学家将两个量子数字完全纠缠在一起真空室今天的量子计算机是从二进制系统中产生的,但编码其量子比特(qubits)的物理系统也有能力编码量子数字(qudits)。这一点最近由因斯布鲁克大学实验物理系的马丁-林鲍尔领导的团队所证明。据苏黎世联邦理工学院的实验物理学家PavelHrmo称:"基于量子比特的量子计算机所面临的挑战是在高维信息载体之间有效地创建纠缠。"在2023年4月19日发表在《自然通讯》杂志上的一项研究中,因斯布鲁克大学的团队现在报告,两个量子比特如何能够以前所未有的性能相互完全纠缠,为更高效和强大的量子计算机铺平道路。像量子计算机一样思考数字9的例子表明,虽然人类能够一步到位地计算出9×9=81,但经典计算机(或计算器)必须算1001×1001,在幕后进行许多步的二进制乘法,才能在屏幕上显示81。在经典的情况下,我们可以承受这样做,但在量子世界中,计算对噪声和外部干扰本质上是敏感的,我们需要减少所需的操作数量,以充分利用现有的量子计算机。对于量子计算机上的任何计算来说,至关重要的是量子纠缠。纠缠是独特的量子特征之一,它支撑着量子在某些任务中大大超过经典计算机的潜力。然而,利用这种潜力需要产生稳健和准确的高维纠缠。量子系统的自然语言因斯布鲁克大学的研究人员现在能够完全纠缠两个量子,每个量子都被编码在单个钙离子的多达5个状态中。这给理论和实验物理学家提供了一个新的工具来超越二进制信息处理,这可能导致更快和更强大的量子计算机。马丁-林鲍尔解释说:"量子系统有许多可用的状态,等待着被用于量子计算,而不是限制他们与量子比特一起工作。当今许多最具挑战性的问题,在化学、物理学或优化等不同领域,都可以从量子计算这种更自然的语言中受益。"...PC版:https://www.cnbeta.com.tw/articles/soft/1356777.htm手机版:https://m.cnbeta.com.tw/view/1356777.htm

封面图片

物理学家观测到“不可观测”的量子相变

物理学家观测到“不可观测”的量子相变1935年,两位当时最著名的物理学家爱因斯坦和薛定谔就现实本质产生了争论。爱因斯坦认为宇宙是局域性的,一个地方发生的事情不会立即影响遥远的另一个地方。薛定谔认为量子纠缠与局域性的假设相悖。当一对粒子发生纠缠时,测量其中一个粒子会立即影响到另一个粒子,无论它身在何处。这违背了爱因斯坦关于传播速度无法超越光速的铁令。爱因斯坦不喜欢不受范围限制的纠缠,他将其称之为幽灵,认为量子力学理论是不完整的。今天的物理学家基本上解决了该问题,纠缠不会在遥远的地方产生立即的影响,它无法在遥远距离上实现特定结果:它只是传播该结果的知识。过去几年一系列的理论和实验研究揭示了纠缠的新面孔:它不是成对出现,而是以粒子星图的形式出现。纠缠通过一组粒子自然传播,建立了一个复杂的临时网。如果你测量粒子的频率足够多,你能阻止网的形成。这种网状非网状的状态令人想起物质的液态固态。网状与非网状的转变代表着信息结构的变化,这是信息的相变。来源,频道:@kejiqu群组:@kejiquchat

封面图片

物理学家成功模拟相互作用量子粒子系统中的超级扩散

物理学家成功模拟相互作用量子粒子系统中的超级扩散这项工作是TCD-IBM博士前奖学金项目的首批成果之一,该项目是最近设立的,IBM在三一学院联合指导博士生的同时,还聘用博士生作为员工。该论文最近发表在著名的《自然》杂志《NPJ量子信息》上。IBM是令人兴奋的量子计算领域的全球领导者。这项研究中使用的早期量子计算机由27个超导量子比特组成(量子比特是量子逻辑的构件),物理上位于IBM位于纽约约克城高地的实验室内,并在都柏林进行远程编程。量子计算是目前最令人兴奋的技术之一,预计在未来十年内将逐渐接近商业应用。除了商业应用,量子计算机还能帮助解决一些令人着迷的基本问题。都柏林圣三一大学和IBM的团队就解决了这样一个有关量子模拟的问题。新成立的圣三一量子联盟(TrinityQuantumAlliance)主任约翰-戈尔德(JohnGoold)教授是这项研究的负责人,他在解释这项工作的意义和量子模拟的总体理念时说"一般来说,模拟由许多相互作用的成分组成的复杂量子系统的动力学问题,对传统计算机来说是一项艰巨的挑战。考虑到这一特定设备上的27个量子位。在量子力学中,这样一个系统的状态是由一个称为波函数的对象来进行数学描述的。要使用标准计算机来描述这个对象,就需要在内存中存储大量的系数,而这些系数的需求是随着量子比特数量的增加而呈指数级增长的;在这个模拟案例中,大约需要1.34亿个系数。""当系统增长到300个比特时,要描述这样一个系统,所需的系数将超过可观测宇宙中的原子数量,而任何经典计算机都无法精确捕捉系统的状态。换句话说,我们在模拟量子系统时会碰壁。使用量子系统模拟量子动力学的想法可以追溯到美国诺贝尔物理学奖得主理查德-费曼,他提出量子系统最好使用量子系统模拟。原因很简单--你自然会利用量子计算机是由波函数描述的这一事实,从而规避了存储状态所需的指数级经典资源"。那么,研究小组究竟模拟了什么呢?Goold教授继续介绍说:"一些最简单的非三维量子系统是自旋链。这些系统由被称为自旋的小磁体连接而成,模仿更复杂的材料,用于理解磁性。我们对一种叫做海森堡链的模型很感兴趣,尤其对自旋激发如何在整个系统中传输的长时间行为感兴趣。在这种长时限制下,量子多体系统进入流体力学体系,传输由描述经典流体的方程来描述。""我们对一种特殊的机制很感兴趣,在这种机制中,由于基础物理学受卡尔达-帕里斯-张方程(Kardar-Parisi-Zhangequation)的支配,会出现一种叫做超扩散的现象。该方程通常描述表面或界面的随机增长,如暴风雪中雪的高度如何增长,咖啡杯在布上的污渍如何随时间增长,或绒毛火如何增长。这种传播被称为超扩散传输。这种传输会随着系统规模的增大而变得越来越快。令人惊奇的是,量子动力学中也出现了支配这些现象的方程,我们能够利用量子计算机来验证这一点。这是这项工作的主要成就。"IBM-Trinity博士前期学者内森-基南(NathanKeenan)是该项目的编程人员,他向我们讲述了量子计算机编程所面临的一些挑战。他说:"量子计算机编程的最大问题是在存在噪声的情况下进行有用的计算。在芯片级执行的运算并不完美,而且计算机对来自实验室环境的干扰非常敏感。因此,总是希望尽量缩短有用程序的运行时间,因为这将缩短这些错误和干扰发生并影响结果的时间。"IBM英国和爱尔兰研究院院长胡安-贝尔纳贝-莫雷诺(JuanBernabé-Moreno)说:"IBM在推动量子计算技术方面有着悠久的历史,不仅带来了数十年的研究成果,还提供了最大、最广泛的商业量子计划和生态系统。我们与都柏林圣三一学院通过量子科学与技术硕士和博士项目开展的合作就体现了这一点,我很高兴这项合作已经取得了可喜的成果。"随着世界进入量子模拟的新时代,令人欣慰的是,都柏林圣三一学院的量子物理学家站在最前沿--为未来的设备编程。量子模拟是由约翰-古尔德(JohnGoold)教授创立并领导的新成立的三位一体量子联盟的核心研究支柱,该联盟拥有五家创始工业合作伙伴,包括IBM、微软、Algorithmiq、Horizon和MoodysAnalytics。...PC版:https://www.cnbeta.com.tw/articles/soft/1388299.htm手机版:https://m.cnbeta.com.tw/view/1388299.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人