"纳米激元晶体管"可以用光处理数据 绕过晶体管的物理缺陷

"纳米激元晶体管"可以用光处理数据绕过晶体管的物理缺陷由物理系的Kyoung-DuckPark教授和YeonjeongKoo教授领导的POSTECH研究小组,与俄罗斯ITMO大学在VasilyKravtsov教授指导下的一个小组合作开发了一个"纳米激元晶体管"。这种创新装置利用了基于异质结构的半导体中的层内和层间激子,解决了传统晶体管中存在的限制。"激发子"负责半导体材料的光发射,由于其电中性状态下光和材料之间的自由转换,是开发下一代发热较少的发光元件和量子信息技术光源的关键。在半导体异质层中有两种激子,它是由两个不同的半导体单层堆叠而成的:水平方向的层内激子和垂直方向的层间激子。两个激子发出的光学信号具有不同的光、持续时间和相干时间。这意味着对这两种光信号的选择性控制可以实现双比特激子晶体管的开发。然而,由于半导体异质结构的非均质性和层间激子的低发光效率,再加上光的衍射极限,在纳米级空间控制层内和层间激子是具有挑战性的。李庆宇、朴京悳教授和顾妍贞资料来源:POSTECH该团队在之前的研究中提出了通过用纳米级尖端压制半导体材料来控制纳米级空间的激子的技术。这一次,研究人员有史以来第一次能够在不直接接触激子的情况下,根据尖端的偏振光远程控制激子的密度和亮度效率。这种结合了光子纳米腔和空间光调制器的方法最显著的优点是,它可以可逆地控制激子,最大限度地减少对半导体材料的物理损害。而且,利用"光"的纳米激子晶体管可以帮助以光速处理大量数据,同时最大限度地减少热能损失。人工智能(AI)进入我们生活的速度超过了我们的预期,它需要大量的数据进行学习,以提供对用户真正有帮助的好答案。随着越来越多的领域利用人工智能,不断增加的信息量应该被收集和处理。这项研究有望提出一个适合数据爆炸时代的新数据处理策略。研究论文的共同第一作者之一YeonjeongKoo说:"纳米超声晶体管有望在实现光学计算机方面发挥不可或缺的作用,这将有助于处理由人工智能技术驱动的海量数据。"...PC版:https://www.cnbeta.com.tw/articles/soft/1355363.htm手机版:https://m.cnbeta.com.tw/view/1355363.htm

相关推荐

封面图片

可重构晶体管可通过编程执行不同功能

可重构晶体管可通过编程执行不同功能研究人员解释说,射频晶体管是电子电路和芯片设计技术的重大突破。可编程晶体管使用的材料与半导体工业使用的材料相同,即硅和锗,它们可以显著改善功耗和能效。传统的晶体管开发包括化学掺杂,这是一种用外来原子"污染"半导体材料的技术。掺杂过程决定了电流的流动方向,一旦晶体管被制造出来就无法改变。射频晶体管用静电掺杂取代了化学掺杂,这是一种不会永久改变半导体材料化学结构的新方法。一旦电场取代了"复杂而昂贵"的化学掺杂过程,晶体管就可以动态地重新配置,以执行不同的逻辑运算。维也纳工业大学教授沃尔特-韦伯(WalterM.Weber)说,重配置工作在"基本开关单元",而不是将信息路由到固定的功能单元。韦伯补充说,这种方法对于构建未来的可重构计算和人工智能应用"大有可为"。研究人员于2021年开发出了RFET基本技术,现在他们已经证明可重写晶体管可用于构建芯片中的所有基本逻辑电路。最近发表的研究报告展示了一种反相器、NAND/NOR和XOR/XNOR门,它们能够在运行时动态切换工作模式。静电掺杂所需的额外栅极需要占用空间,这意味着RFET并不像标准CMOS晶体管那么小。新的可编程晶体管不可能很快取代固定晶体管,但它们可以共存,并为某些灵活性至关重要的计算应用提供动力。研究人员解释说,RFET的可重构特性可以减少逻辑电路所需的晶体管总数。更少的晶体管意味着制造芯片所需的空间更小,功耗也会降低。通过切换单个晶体管或整个电路的极性,单个电路可以提供多种功能。...PC版:https://www.cnbeta.com.tw/articles/soft/1425449.htm手机版:https://m.cnbeta.com.tw/view/1425449.htm

封面图片

西电郝跃院士在超陡垂直晶体管器件研究方面取得进展

西电郝跃院士在超陡垂直晶体管器件研究方面取得进展该工作报道一种新型晶体管器件技术,将电阻阈值开关与垂直晶体管进行集成,实现了兼具超陡亚阈值摆幅与高集成密度潜力的垂直沟道晶体管,电流开关比超过8个数量级且室温亚60mV/dec电流范围超过6个数量级,为后摩尔时代高性能晶体管技术提供了一种新的器件方案。随着集成电路制造工艺下探亚5纳米技术节点,传统的晶体管尺寸微缩路线无法像过去一样使能“器件-芯片”性能提升与成本控制。在此背景下,学术界与工业界近年来提出多种创新器件技术,以期克服常规MOSFET的技术局限。其中,三星、IBM、欧洲微电子中心(IMEC)等国际研发机构推出了垂直输运场效应晶体管(vertical-transportfield-effecttransistor,VTFET)器件技术。通过将电流方向从传统MOSFET的平面方向转换为垂直方向,该器件结构有望在芯片上垂直构造晶体管,从而大幅降低器件占有空间,提高集成密度。受此启发,西电研究团队采用超薄二维异质结构造VTFET半导体沟道并与电阻阈值开关(TS)垂直集成,实现超陡垂直晶体管(TS-VTFET)。这一器件技术借助超薄二维半导体出色的静电调控,大幅提升器件栅控能力;同时,借助电阻阈值开关的电压控制“绝缘-导电”相变特性,该器件的室温亚阈值摆幅达到1.52mV/dec,远低于常规MOSFET室温亚阈值摆幅高于60mV/dec的理论极限。此外,在发表的概念验证工作中,研究团队制备的超陡垂直晶体管表现出强大性能,包括电流开关比高于8个数量级、亚60mV/dec电流区间超过6个数量级、漏电流小于10fA等,为后摩尔时代高性能低功耗晶体管技术提供了一种新的方案。...PC版:https://www.cnbeta.com.tw/articles/soft/1419269.htm手机版:https://m.cnbeta.com.tw/view/1419269.htm

封面图片

复旦大学成功验证实现 3nm 关键技术 —— GAA 晶体管

复旦大学成功验证实现3nm关键技术——GAA晶体管https://www.eet-china.com/news/202101041645.html随着集成电路制造工艺进入到5纳米技术节点以下,传统晶体管微缩提升性能难以为继,技术面临重大革新。采用多沟道堆叠和全面栅环绕的新型多桥沟道晶体管乘势而起,利用GAA结构实现了更好的栅控能力和漏电控制,被视为3-5纳米节点晶体管的主要候选技术。现有工艺已实现了7层硅纳米片的GAA多桥沟道晶体管,大幅提高驱动电流,然而随着堆叠沟道数量的增加,漏电流也随之增加,导致的功耗不可忽视。

封面图片

计算领域的里程碑:拥有超过1000个晶体管的二维半导体材料内存处理器诞生

计算领域的里程碑:拥有超过1000个晶体管的二维半导体材料内存处理器诞生由EPFL研究人员开发的首个使用二维半导体材料的大规模内存处理器可大幅减少信息和通信技术领域的能源消耗。当信息和通信技术(ICT)处理数据时,它们会将电能转化为热能。如今,全球ICT生态系统的二氧化碳排放量已与航空业不相上下。然而,事实证明,计算机处理器消耗的大部分能源并非用于执行计算。相反,处理数据所消耗的大部分能源用于在内存和处理器之间传输字节。在11月13日发表在《自然-电子学》(NatureElectronics)杂志上的一篇论文中,EPFL工程学院纳米电子学和结构实验室(LANES)的研究人员介绍了一种新型处理器,这种处理器将数据处理和存储整合到一个设备上,即所谓的内存处理器,从而解决了这种低效问题。他们在二维半导体材料的基础上创造出了第一个由1000多个晶体管组成的内存处理器,开辟了新的领域,这是通往工业化生产道路上的一个重要里程碑。在发表于《自然-电子学》(NatureElectronics)杂志上的一篇论文中,EPFL工程学院纳米电子学与结构实验室(LANES)的研究人员介绍了一种新型处理器,这种处理器将数据处理和存储整合到一个设备上,即所谓的内存处理器,从而解决了效率低下的问题。他们在二维半导体材料的基础上创造了首个由1000多个晶体管组成的内存处理器,开辟了新的领域,这是通往工业化生产道路上的一个重要里程碑。图片来源:2023EPFL/AlanHerzog冯-纽曼的遗产领导这项研究的安德拉什-基斯(AndrasKis)认为,当今CPU效率低下的罪魁祸首源自普遍采用的冯-诺依曼架构。具体来说,就是将用于执行计算和存储数据的组件物理分离。由于这种分离,处理器需要从存储器中检索数据来执行计算,这就需要移动电荷、对电容器充电和放电以及沿线传输电流,所有这些都会耗散能量。直到20年前,这种架构还是合理的,因为数据存储和处理需要不同类型的设备。但是,冯-诺依曼架构正日益受到更高效替代方案的挑战。基斯解释说:"如今,人们正在努力将存储和处理合并成一种更通用的内存处理器,这种处理器包含的元件既可以用作存储器,也可以用作晶体管。他的实验室一直在探索如何利用二硫化钼(MoS2)这种半导体材料实现这一目标。"新型二维处理器架构在他们的《自然-电子学》论文中,LANES的博士助理GuilhermeMigliatoMarega和他的合著者介绍了一种基于MoS2的内存处理器,专门用于数据处理中的基本操作之一:矢量矩阵乘法。这种运算在数字信号处理和人工智能模型的实施中无处不在。提高其效率可为整个信息和通信技术领域节省大量能源。他们的处理器将1024个元素组合在一个一厘米见方的芯片上。每个元件包括一个二维MoS2晶体管和一个浮动栅极,浮动栅极用于在存储器中存储电荷,从而控制每个晶体管的导电性。以这种方式将处理和存储器耦合在一起,从根本上改变了处理器进行计算的方式。基斯解释说:"通过设置每个晶体管的电导率,我们只需向处理器施加电压并测量输出,就能执行模拟矢量矩阵乘法运算。"向实际应用迈进一大步在开发内存处理器的过程中,材料MoS2的选择起到了至关重要的作用。首先,MoS2是一种半导体,这是开发晶体管的必要条件。与当今计算机处理器中使用最广泛的半导体硅不同,MoS2形成了一个稳定的单层,只有三个原子厚,只与周围环境发生微弱的相互作用。它的薄度为生产极其紧凑的设备提供了可能。最后,这是一种Kis实验室非常熟悉的材料。2010年,他们利用从晶体上剥离下来的单层MoS2材料,用苏格兰胶带制作出了第一个单层MoS2晶体管。在过去的13年中,他们的工艺已日趋成熟,而米利亚托-马雷加(MigliatoMarega)的贡献功不可没。"从单个晶体管到超过1000个晶体管,关键的进步在于我们能够沉积的材料质量。经过大量的工艺优化,我们现在可以生产覆盖着一层均匀的MoS2的整个晶片。这使我们能够采用行业标准工具在计算机上设计集成电路,并将这些设计转化为物理电路,从而为大规模生产打开大门,"基斯说道。振兴欧洲芯片制造业除了纯粹的科学价值外,Kis还认为这一成果证明了瑞士与欧盟之间紧密科学合作的重要性,特别是在旨在加强欧洲在半导体技术和应用方面的竞争力和适应力的《欧洲芯片法案》背景下。"欧盟的资助对这个项目和之前的项目都至关重要,包括资助第一个MoS2晶体管的工作,这表明欧盟的资助对瑞士是多么重要,"基斯说。"同时,这也表明了瑞士所做的工作如何能让欧盟在重振电子制造的过程中受益。例如,欧盟可以专注于开发用于人工智能加速器和其他新兴应用的非冯-诺依曼处理架构,而不是与其他人进行同样的竞赛。通过定义自己的竞赛,欧盟可以抢占先机,确保在未来占据有利地位。"...PC版:https://www.cnbeta.com.tw/articles/soft/1397345.htm手机版:https://m.cnbeta.com.tw/view/1397345.htm

封面图片

当丝绸遇上硅:研究人员看见生物材质混合晶体管的曙光

当丝绸遇上硅:研究人员看见生物材质混合晶体管的曙光微处理器规模的晶体管可以检测生物状态和环境并做出反应。您的手机微处理器芯片中可能装有超过150亿个微小晶体管。晶体管由硅、金和铜等金属以及绝缘体组成,它们共同接收电流并将其转换为1和0,从而传递信息并存储信息。晶体管材料是无机材料,基本上来自岩石和金属。但是,如果能让这些基本电子元件具有部分生物特性,能够直接对环境做出反应,并像活体组织一样发生变化呢?塔夫茨大学Silklab实验室的一个团队就是这样做的,他们用生物蚕丝代替绝缘材料制造出了晶体管。他们最近在科学杂志《先进材料》上报告了自己的研究成果。蚕丝纤维素--蚕丝纤维的结构蛋白可以精确地沉积在表面上,并很容易用其他化学和生物分子对其进行修饰,从而改变其特性。以这种方式功能化的蚕丝可以从人体或环境中拾取并检测多种成分。利用生物-硅混合电子技术制造的呼吸传感器,混合生物晶体管会根据环境中的气体和其他分子改变其电子行为。资料来源:塔夫茨大学FioOmenetto健康监测设备的进步该团队首次展示的原型设备使用混合晶体管制造了高灵敏度和超快呼吸传感器,可检测湿度变化。对丝层的进一步改良可使设备能够检测某些心血管和肺部疾病以及睡眠呼吸暂停,或捕捉呼吸中的二氧化碳水平及其他气体和分子,从而提供诊断信息。如果与血浆一起使用,它们有可能提供氧合和葡萄糖水平、循环抗体等信息。在开发混合晶体管之前,FrankC.Doble工程学教授FiorenzoOmenetto领导的Silklab实验室已经利用纤维素制造了生物活性油墨,用于可检测环境或身体变化的织物、可置于皮下或牙齿上监测健康和饮食的传感纹身,以及可打印在任何表面检测病原体(如导致COVID-19的冠状病毒)的传感器。晶体管是一个简单的电气开关,一根金属导线输入,另一根导线输出。导线之间是半导体材料,之所以称之为半导体材料,是因为除非经过哄骗,否则它无法导电。另一个被称为"栅极"的电子输入源被绝缘体隔开。栅极是开启和关闭晶体管的"钥匙"。当阈值电压(我们称之为"1")在绝缘体上产生电场时,它就会触发导通状态,从而引发半导体中的电子运动,使电流开始流过导线。在生物混合晶体管中,蚕丝层被用作绝缘体,当它吸收水分时,就会像凝胶一样携带其中的离子(带电分子)。栅极通过重新排列丝胶中的离子来触发导通状态。通过改变蚕丝中的离子成分,晶体管的工作状态也会随之改变,从而使其能够被介于0和1之间的任何栅极值触发。计算与生物融合的未来Omenetto说:"你可以想象,创建的电路可以利用数字计算中使用的离散二进制电平所无法表示的信息,但可以像模拟计算那样处理可变信息,而变化是由改变蚕丝绝缘体内部的成分引起的。这为在现代微处理器中将生物学引入计算提供了可能。当然,已知最强大的生物计算机是大脑,它通过不同程度的化学和电信号处理信息。"创建混合生物晶体管的技术挑战在于实现纳米级的丝绸处理,小到10纳米或人类头发直径的不到1/10000。工程学院博士后研究员BeomJoonKim说:"在实现这一目标后,我们现在可以用与商业芯片制造相同的制造工艺来制造混合晶体管。这意味着我们可以用现在的能力制造出十亿个这样的晶体管"。让数十亿个晶体管节点通过丝绸中的生物过程重新配置连接,可以制造出像人工智能中使用的神经网络一样的微处理器。Omenetto说:"展望未来,我们可以想象,集成电路可以进行自我训练,对环境信号做出反应,并直接在晶体管中记录记忆,而不是将其发送到单独的存储器中。"检测和响应更复杂生物状态的设备,以及大规模模拟和神经形态计算,都有待开发。Omenetto对未来的机遇持乐观态度。他说:"这开辟了电子学与生物学界面的新思路,未来将有许多重要的基础发现和应用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1399639.htm手机版:https://m.cnbeta.com.tw/view/1399639.htm

封面图片

一万亿晶体管GPU将到来 台积电董事长撰文解读

一万亿晶体管GPU将到来台积电董事长撰文解读值得一提的是,本文署名作者MARKLIU(刘德音)和H.-S.PHILIPWONG,其中刘德音是台积电董事长。H.-SPhilipWong则是斯坦福大学工程学院教授、台积电首席科学家。在这里,我们将此文翻译出来,以飨读者。以下为文章正文:1997年,IBM深蓝超级计算机击败了国际象棋世界冠军GarryKasparov。这是超级计算机技术的突破性演示,也是对高性能计算有一天可能超越人类智能水平的首次展示。在接下来的10年里,我们开始将人工智能用于许多实际任务,例如面部识别、语言翻译以及推荐电影和商品。再过十五年,人工智能已经发展到可以“合成知识”(synthesizeknowledge)的地步。生成式人工智能,如ChatGPT和StableDiffusion,可以创作诗歌、创作艺术品、诊断疾病、编写总结报告和计算机代码,甚至可以设计与人类制造的集成电路相媲美的集成电路。人工智能成为所有人类事业的数字助手,面临着巨大的机遇。ChatGPT是人工智能如何使高性能计算的使用民主化、为社会中的每个人带来好处的一个很好的例子。所有这些奇妙的人工智能应用都归功于三个因素:高效机器学习算法的创新、训练神经网络的大量数据的可用性,以及通过半导体技术的进步实现节能计算的进步。尽管它无处不在,但对生成式人工智能革命的最后贡献却没有得到应有的认可。在过去的三十年里,人工智能的重大里程碑都是由当时领先的半导体技术实现的,没有它就不可能实现。DeepBlue采用0.6微米和0.35微米节点芯片制造技术的混合实现;赢得ImageNet竞赛的深度神经网络并开启了当前机器学习时代的设备使了用40纳米技术打造的芯片;AlphaGo使用28纳米技术征服了围棋游戏;ChatGPT的初始版本是在采用5纳米技术构建的计算机上进行训练的。;ChatGPT的最新版本由使用更先进的4纳米技术的服务器提供支持。所涉及的计算机系统的每一层,从软件和算法到架构、电路设计和设备技术,都充当人工智能性能的乘数。但可以公平地说,基础晶体管器件技术推动了上面各层的进步。如果人工智能革命要以目前的速度继续下去,它将需要半导体行业做出更多贡献。十年内,它将需要一个1万亿晶体管的GPU,也就是说,GPU的设备数量是当今典型设备数量的10倍。AI模型大小的不断增长,让人工智能训练所需的计算和内存访问在过去五年中增加了几个数量级。例如,训练GPT-3需要相当于一整天每秒超过50亿次的计算操作(即5,000petaflops/天),以及3万亿字节(3TB)的内存容量。新的生成式人工智能应用程序所需的计算能力和内存访问都在持续快速增长。我们现在需要回答一个紧迫的问题:半导体技术如何跟上步伐?从集成器件到集成小芯片自集成电路发明以来,半导体技术一直致力于缩小特征尺寸,以便我们可以将更多晶体管塞进缩略图大小的芯片中。如今,集成度已经上升了一个层次;我们正在超越2D缩放进入3D系统集成。我们现在正在将许多芯片组合成一个紧密集成、大规模互连的系统。这是半导体技术集成的范式转变。在人工智能时代,系统的能力与系统中集成的晶体管数量成正比。主要限制之一是光刻芯片制造工具被设计用于制造不超过约800平方毫米的IC,即所谓的光罩限制(reticlelimit)。但我们现在可以将集成系统的尺寸扩展到光刻掩模版极限之外。通过将多个芯片连接到更大的中介层(一块内置互连的硅片)上,我们可以集成一个系统,该系统包含的设备数量比单个芯片上可能包含的设备数量要多得多。例如,台积电的CoWoS(chip-on-wafer-on-substrate)技术就可以容纳多达六个掩模版区域的计算芯片,以及十几个高带宽内存(HBM)芯片。CoWoS是台积电的硅晶圆上芯片先进封装技术,目前已在产品中得到应用。示例包括NVIDIAAmpere和HopperGPU。当中每一个都由一个GPU芯片和六个高带宽内存立方体组成,全部位于硅中介层上。计算GPU芯片的尺寸大约是芯片制造工具当前允许的尺寸。Ampere有540亿个晶体管,Hopper有800亿个。从7纳米技术到更密集的4纳米技术的转变使得在基本相同的面积上封装的晶体管数量增加了50%。Ampere和Hopper是当今大型语言模型(LLM)训练的主力。训练ChatGPT需要数万个这样的处理器。HBM是对AI日益重要的另一项关键半导体技术的一个例子:通过将芯片堆叠在一起来集成系统的能力,我们在台积电称之为SoIC(system-on-integrated-chips)。HBM由控制逻辑IC顶部的一堆垂直互连的DRAM芯片组成。它使用称为硅通孔(TSV)的垂直互连来让信号通过每个芯片和焊料凸点以形成存储芯片之间的连接。如今,高性能GPU广泛使用HBM。展望未来,3DSoIC技术可以为当今的传统HBM技术提供“无凸块替代方案”(bumplessalternative),在堆叠芯片之间提供更密集的垂直互连。最近的进展表明,HBM测试结构采用混合键合技术堆叠了12层芯片,这种铜对铜连接的密度高于焊料凸块所能提供的密度。该存储系统在低温下粘合在较大的基础逻辑芯片之上,总厚度仅为600µm。对于由大量运行大型人工智能模型的芯片组成的高性能计算系统,高速有线通信可能会很快限制计算速度。如今,光学互连已被用于连接数据中心的服务器机架。我们很快就会需要基于硅光子学的光学接口,并与GPU和CPU封装在一起。这将允许扩大能源效率和面积效率的带宽,以实现直接的光学GPU到GPU通信,这样数百台服务器就可以充当具有统一内存的单个巨型GPU。由于人工智能应用的需求,硅光子将成为半导体行业最重要的使能技术之一。迈向万亿晶体管GPU如前所述,用于AI训练的典型GPU芯片已经达到了标线区域极限(reticlefieldlimit)。他们的晶体管数量约为1000亿个。晶体管数量增加趋势的持续将需要多个芯片通过2.5D或3D集成互连来执行计算。通过CoWoS或SoIC以及相关的先进封装技术集成多个芯片,可以使每个系统的晶体管总数比压缩到单个芯片中的晶体管总数大得多。如AMDMI300A就是采用这样的技术制造的。AMDMI300A加速处理器单元不仅利用了CoWoS,还利用了台积电的3D技术SoIC。MI300A结合了GPU和CPU内核,旨在处理最大的人工智能工作负载。GPU为AI执行密集的矩阵乘法运算,而CPU控制整个系统的运算,高带宽存储器(HBM)统一为两者服务。采用5纳米技术构建的9个计算芯片堆叠在4个6纳米技术基础芯片之上,这些芯片专用于缓存和I/O流量。基础芯片和HBM位于硅中介层之上。处理器的计算部分由1500亿个晶体管组成。我们预测,十年内,多芯片GPU将拥有超过1万亿个晶体管。我们需要在3D堆栈中将所有这些小芯片连接在一起,但幸运的是,业界已经能够快速缩小垂直互连的间距,从而增加连接密度。而且还有足够的空间容纳更多。我们认为互连密度没有理由不能增长一个数量级,甚至更高。GPU的节能性能趋势那么,所有这些创新的硬件技术如何提高系统的性能呢?如果我们观察一个称为节能性能的指标的稳步改进,我们就可以看到服务器GPU中已经存在的趋势。EEP是系统能源效率和速度(theenergyefficiencyandspeedofasystem)的综合衡量标准。过去15年来,半导体行业的能效性能每两年就提高了三倍左右。我们相信这一趋势将以历史速度持续下去。它将受到多方面创新的推动,包括新材料、器件和集成技术、极紫外(EUV)光刻、电路设计、系统架构设计以及所有这些技术元素的共同优化等。特别是,EEP的增加将通过我们在此讨论的...PC版:https://www.cnbeta.com.tw/articles/soft/1425470.htm手机版:https://m.cnbeta.com.tw/view/1425470.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人