与自闭症有关的基因突变被发现会过度刺激脑细胞

与自闭症有关的基因突变被发现会过度刺激脑细胞自闭症,又称自闭症谱系障碍(ASD),是一种复杂的发育障碍,影响交流、社会互动和行为。它的特点是在语言和非语言交流、社会互动和重复行为方面存在困难。该研究小组使用了尖端技术,包括从干细胞中培养人类脑细胞并将其移植到小鼠大脑中,以取得这些发现。科学家们说,这项工作说明了一种研究大脑疾病的新方法的潜力。研究人员在《分子精神病学》(MolecularPsychiatry)杂志上描述了这项研究,他们报告了一种突变--已知导致人类自闭症的基因Neurologin-3中的R451C--被发现在小鼠大脑中移植的人类脑细胞网络中激起了更高层次的交流。科学家们在实验中对这种过度兴奋进行了量化,表现为电活动的爆发,比没有这种突变的脑细胞中的水平高出一倍多。罗格斯大学罗伯特-伍德-约翰逊医学院新泽西州儿童健康研究所神经科学和细胞生物学系副教授、该研究的资深作者庞志平说:"我们很惊讶地发现了一种增强,而不是一种缺失。我们的研究揭示了这些特定细胞的这种功能增益,导致大脑神经元网络之间的不平衡,破坏了正常的信息流。"庞说,构成人类大脑的相互连接的细胞网包含了专门的"兴奋性"细胞,它们刺激电活动,并由"抑制性"脑细胞来平衡,它们遏制电脉冲。科学家们发现,由突变引起的过大的电活动爆发使小鼠的大脑失去了平衡。自闭症谱系障碍是一种由大脑差异引起的发育障碍。根据美国疾病控制和预防中心的估计,大约每44名儿童中就有一名被确认患有这种疾病。根据美国国立卫生研究院的国家神经系统疾病和中风研究所的研究表明自闭症可能是在发育早期正常大脑生长中断的结果,这些干扰可能是控制大脑发育和调节脑细胞相互交流方式的基因突变的结果。庞说:"自闭症的许多潜在机制是未知的,这阻碍了有效治疗方法的开发。利用人类干细胞产生的人类神经元作为模型系统,我们想了解一个特定的突变如何以及为什么会导致人类的自闭症。"研究人员采用CRISPR技术来改变人类干细胞的遗传物质,以创建一个包含他们想要研究的突变的细胞系,然后衍生出携带这种突变的人类神经元细胞。CRISPR是一种独特的基因编辑技术。在这项研究中,生成的人类神经元细胞,一半带有突变,一半没有突变,然后被植入小鼠的大脑中。在那里,研究人员利用电生理学测量并比较了特定神经元的电活动,电生理学是研究生物细胞电特性的生理学分支。电压变化或电流可以根据研究对象的尺寸,在不同的尺度上进行量化。"我们的发现表明,NLGN3R451C突变极大地影响了人类神经元的兴奋性突触传递,从而引发了可能与精神障碍有关的整体网络属性的变化,"庞说。"我们认为这对该领域来说是非常重要的信息"。他预计为进行这项实验而开发的许多技术将被用于未来对其他大脑疾病基础的科学调查,如精神分裂症。这项研究强调了使用人类神经元作为模型系统来研究精神疾病和开发新型治疗方法的潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1339171.htm手机版:https://m.cnbeta.com.tw/view/1339171.htm

相关推荐

封面图片

研究:科学家发现脑细胞的不规则产生可能会导致自闭症

研究:科学家发现脑细胞的不规则产生可能会导致自闭症罗格斯大学的研究人员通过研究自闭症谱系障碍(ASD)患者的脑干细胞发现了非常早期的大脑发育异常的证据,而这可能是导致神经精神状况的原因。该结果证实了科学家们长期以来一直持有的一个理论。ASD在胎儿发育的早期就开始了,当时脑干细胞正在分裂,从而创造出一个功能性大脑的关键元素。资料图罗格斯大学(RutgersUniversity)的研究人员研究了ASD患者的脑干细胞--也被称为神经前体细胞(NPC),另外还在《StemCellReports》上发表了他们的发现。他们发现永久性脑细胞的数量被NPC过度生产或生产不足。据悉,NPC负责制造三种主要类型的脑细胞:神经元、少突胶质细胞和星形胶质细胞。“我们从所有样本中研究的NPCs显示出异常增殖,要么‘太少’,要么‘太多’,这表明对脑细胞增殖的控制不佳是ASD致病的一个重要基础,”罗格斯大学罗伯特-伍德-约翰逊医学院的神经科学和细胞生物学及儿科教授、该论文作者EmanuelDicicco-Bloom说道,“这项研究在细胞水平上表明,增殖的改变确实是该疾病的一个可能机制,并支持从以前的研究中得到的影响。”该研究专注于五个自闭症患者的干细胞活动,其中包括那些没有已知遗传原因的特发性自闭症患者及其他具有遗传定义的16p11.2缺失的人。那些患有巨头症的人,其NPC产生了过多的脑细胞。其余两名没有巨头症的患者,他们的NPC产生的脑细胞则太少。ASD是一种神经发育障碍,其特点是社会交往和沟通困难并存在重复和限制性行为。大多数ASD病例是特发性的。约15%到20%的ASD病例是由特定的基因突变引起的。NPC是在产前形成的,时间从第一胎的末尾延伸到第二胎,约是人类胎儿40周妊娠期的第8到24周。DiCicco-Bloom表示:“我们实际上已经测量了人类神经前体的增殖并大大推进了我们的理解。将来,一旦我们复制了这些研究并进行了扩展,我们也可能将这些知识作为生物标志物,而这可能是何时引入治疗的信号或确定用药物瞄准的信号通路。”...PC版:https://www.cnbeta.com/articles/soft/1307039.htm手机版:https://m.cnbeta.com/view/1307039.htm

封面图片

神经科学研究暗示能够治愈自闭症的药物正在出现

神经科学研究暗示能够治愈自闭症的药物正在出现来自自闭症谱系的疾病(ASD,自闭症谱系障碍)不仅表现为社会交往、沟通、兴趣形成方面的障碍,还表现为刻板的行为模式。这往往还伴随着其他异常情况,如癫痫或多动症。科学家们正在紧张地寻找导致这种复杂的发育障碍的分子异常,影响神经细胞分子程序的众多遗传因素已经与自闭症的发展有关。来自赫克托尔脑转化研究所(HITBR)的莫里茨-马勒(MoritzMall)长期以来一直在研究蛋白质MYT1L在各种神经元疾病中的作用。该蛋白是一种所谓的转录因子,决定哪些基因在细胞中是活跃的,哪些不是。人体中几乎所有的神经细胞在其整个生命期都会产生MYT1L。培养皿中由干细胞编程的人类脑细胞(红色,绿色)。资料来源:JanaTegethoff/HITBR几年前,马勒已经表明,MYT1L通过抑制其他发育途径来保护神经细胞的身份,这些发育途径将细胞编程为肌肉或结缔组织等。在一些神经系统疾病中发现了MYT1L的突变,如精神分裂症和癫痫,但也发现了脑部畸形。在目前由欧洲研究理事会ERC资助的工作中,Mall和他的团队研究了"神经元特性的守护者"在ASD发展中的确切作用。为此,他们从基因上关闭了小鼠和人类神经细胞中的MYT1L,这些神经细胞是在实验室中由重新编程的干细胞衍生而来。MYT1L的丧失导致小鼠和人类神经元的电生理过度活跃,从而损害了神经功能。缺乏MYT1L的小鼠出现了大脑异常,例如大脑皮层变薄。这些动物还表现出一些ASS类型的行为变化,如社交障碍或多动症。MYT1L缺陷的神经元特别引人注目的是它们产生了过多的钠离子通道,这些通道通常主要限于心肌细胞。这些孔状蛋白允许钠离子通过细胞膜,因此对导电性至关重要,因此也对细胞的运作至关重要。如果一个神经细胞产生过多的这种通道蛋白,就会造成电生理上的过度激活。在临床医学中,阻断钠通道的药物已经使用了很长时间。这些药物包括拉莫三嗪,它被认为可以防止癫痫发作。当MYT1L缺陷的神经细胞被拉莫三嗪治疗后,其电生理活动恢复正常。在小鼠身上,这种药物甚至能够抑制ASD相关的行为,如多动症。"显然,成年后的药物治疗可以缓解脑细胞功能障碍,从而抵消自闭症的典型行为异常--即使在机体发育阶段,MYT1L的缺失已经损害了大脑发育,"莫里茨-马勒解释说。然而,这些结果仍然局限于小鼠的研究;尚未对自闭症谱系中的疾病患者进行临床研究。第一个临床研究正处于早期规划阶段。...PC版:https://www.cnbeta.com.tw/articles/soft/1344565.htm手机版:https://m.cnbeta.com.tw/view/1344565.htm

封面图片

人脑类器官准确模拟自闭症,为治疗最复杂脑疾病带来希望

人脑类器官准确模拟自闭症,为治疗最复杂脑疾病带来希望为了发育,人类大脑会依赖一个独特过程建立错综复杂的分层和连接皮层,这一过程也使人类更容易出现神经发育障碍——许多自闭症谱系障碍(ASD)高风险基因就与皮层发育息息相关。为了打开自闭症研究的“黑匣子”,奥地利科学院分子生物技术研究所(IMBA)和瑞士苏黎世联邦理工学院联合开发了一种技术来筛选自闭症关键转录调节基因。这一技术被认为标志着人类组织中复杂、高效和便捷的基因筛选时代的开始。在新开发的称为“CHOOSE”(CRISPR-人类类器官scRNA测序)的系统中,大脑类器官中每个细胞最多携带一个特定基因突变。研究人员可在单细胞水平上追踪每个突变的影响,并绘制每个细胞的发育轨迹。通过这种高通量方法,即可系统地灭活一系列致病基因,而随着携带这些突变的类器官生长,还能分析每种突变对发育的影响。研究人员以此了解到自闭症致病基因共同的分子机制,他们与临床医生合作,从两个患者干细胞样本中生成了人脑类器官。两名患者在导致自闭症的同一基因中都有突变。生成的类器官显示出与特定细胞类型相关的显著发育缺陷。通过这项新技术,科学家和临床医生获得了一种强大且精确控制的高通量筛选工具,其不但可大大缩短分析时间,还为人们了解疾病机制、最终治愈疾病提供宝贵的信息。来源:投稿:@ZaiHuaBot频道:@TestFlightCN

封面图片

研究发现高压氧舱疗法能显著提高自闭症患者的社会技能和大脑功能

研究发现高压氧舱疗法能显著提高自闭症患者的社会技能和大脑功能特拉维夫大学萨戈尔神经科学学院和心理科学学院博阿斯-巴拉克博士实验室的博士生英巴-费舍尔(InbarFischer)带领团队做出了这一发现。这些发现最近发表在《国际分子科学杂志》上。根据费舍尔和巴拉克的说法,高压氧医学是一种治疗方法,患者在特殊的舱室中接受治疗,那里的大气压力大于我们在海平面上的压力,而且他们还可以得到纯氧用于呼吸。高压氧医学已经被用于治疗各种医疗状况,并被认为是安全的。近年来积累的科学证据表明,高压氧治疗的某些方案能够促进大脑的血液和氧气供应,从而提高大脑功能。巴拉克博士表示:"自闭症的医学原因很多,而且多种多样,最终形成了我们所熟悉的多样化自闭症谱系。今天,大约20%的自闭症病例是由遗传原因解释的,也就是说,那些涉及遗传缺陷的病例,但不一定是由父母继承的。尽管自闭症的来源多种多样,但与之相关的整个行为问题仍然包括在'自闭症'这个单一的大标题下,而且所提供的治疗和药物不一定直接对应于自闭症发展的原因"。在研究的初步阶段,一名携带SHANK3基因突变的女孩接受了ShaiEfrati教授的治疗,他是Shamir"AssafHarofeh"医疗中心Sagol高压氧医学中心的主任,Sagol神经科学学院的一名教师,也是这项研究的合作伙伴。在压力舱中完成一系列治疗后,很明显,这个女孩的社会能力和大脑功能有了很大的改善。在下一阶段,为了更深入地理解治疗的成功,巴拉克博士实验室的研究团队试图了解在压力室中对大脑的影响。为此,研究人员使用了携带与接受治疗的女孩一样的SHANK3基因突变的成年动物模型。该实验包括一个在压力室中进行40次一小时治疗的方案,持续了几个星期。巴拉克博士:"我们发现,在富氧压力舱中的治疗减少了大脑中的炎症,并导致负责改善大脑血液和氧气供应的物质的表达增加,从而改善大脑功能。此外,我们看到小胶质细胞的数量减少,这些免疫系统细胞表明有炎症,与自闭症有关。除了我们发现的神经学研究结果外,我们更感兴趣的是看这些大脑的改善是否也导致了社会行为的改善,众所周知,自闭症患者的社会行为是受损的。令我们惊讶的是,研究结果显示,与对照组相比,在压力舱中接受治疗的自闭症动物模型的社会行为有了明显的改善,后者暴露在正常压力的空气中,没有用到纯氧。接受治疗的动物模型显示出更多的社会兴趣,与对照组的动物模型相比,它们更愿意花更多的时间与新接触的动物为伴。"InbarFischer总结说。"动物模型中的突变与人类中存在的突变完全相同。因此,我们的研究可能对改善这种基因突变导致的自闭症的病理状况有临床意义,也可能对其他原因导致的自闭症有临床意义。由于高压氧舱治疗是非侵入性的,并且被发现是安全的,我们的发现是令人鼓舞的,证明这种治疗方法也可能改善人类的这些行为和神经方面,此外还对它们如何在大脑中发生提供了科学解释。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333961.htm手机版:https://m.cnbeta.com.tw/view/1333961.htm

封面图片

科学家可能发现了自闭症的第一个征兆:异常巨大的大脑

科学家可能发现了自闭症的第一个征兆:异常巨大的大脑一些患有自闭症的儿童面临着严重、持久的挑战,包括发育迟缓、社交障碍,甚至可能无法说话。与此同时,其他儿童的症状可能会随着时间的推移而减轻。在此之前,这种结果上的差异对科学家来说一直是个谜。加州大学圣地亚哥分校的研究人员在《分子自闭症》(MolecularAutism)杂志上发表的一项新研究首次揭示了这一问题。研究结果包括这两种亚型自闭症的生物学基础是在子宫内形成的。研究人员利用10名1至4岁患有特发性自闭症(未找到单基因病因)的幼儿的血液干细胞,创建了大脑皮质器官(BCOs)或胎儿皮质模型。他们还从六名神经正常的幼儿身上制造出了大脑皮层有机体。大脑皮层通常被称为灰质,位于大脑外侧。它拥有数百亿个神经细胞,负责意识、思维、推理、学习、记忆、情感和感官功能等基本功能。研究结果包括根据在不同年份(2021年和2022年)进行的两轮研究,患有自闭症的幼儿的BCO比神经畸形对照组的BCO大得多,大约大40%。每一轮研究都要从每位患者身上提取数百个器官组织。研究人员还发现,自闭症幼儿的BCO生长异常与他们的疾病表现有关。幼儿的BCO体积越大,他们日后的社交和语言症状就越严重,核磁共振成像显示的大脑结构也越大。与神经正常的同龄人相比,BCO过度增大的幼儿在社交、语言和感官脑区的体积比正常幼儿要大。桑福德干细胞研究所(SSCI)太空干细胞轨道综合研究中心主任阿利森-穆奥特里(AlyssonMuotri)博士说:"大脑并不一定越大越好。"她是癌症干细胞生物学领域领先的医生科学家,其研究探索了空间如何改变癌症进展这一基本问题。穆奥特里还是加州大学圣地亚哥分校医学院儿科学系和细胞与分子医学系的教授。更重要的是,所有自闭症儿童的脑器质性组织,无论严重程度如何,其生长速度都比神经正常儿童快三倍左右。一些最大的脑器质性组织--来自最严重、最顽固的自闭症儿童的神经元也在加速形成。幼儿的自闭症越严重,他们的脑器质性组织的生长速度就越快,有时甚至发展到神经元过剩的地步。与穆奥特里共同领导这项研究的医学院神经科学系教授、博士埃里克·库尔切森(EricCourchesne)称这项研究是"独一无二的"。他说,将自闭症儿童的数据(包括智商、症状严重程度和核磁共振成像等影像学检查)与相应的BCO或类似的干细胞衍生模型相匹配,是非常有意义的。但奇怪的是,在他们的工作之前,还没有开展过此类研究。"自闭症的核心症状是社交情感和沟通问题,"兼任加州大学圣地亚哥分校自闭症卓越中心联合主任的库尔切森说。"我们需要了解造成这些问题的潜在神经生物学原因,以及它们是何时开始的。我们是第一个设计自闭症干细胞研究这一具体和核心问题的人。"长期以来,人们一直认为自闭症是一种复杂的渐进性疾病,始于产前,涉及多个阶段和过程。虽然自闭症患者没有两个是相同的--就像神经正常的人没有两个是相同的一样--但患有这种神经发育疾病的人一般可分为两类:一类是社交障碍严重,需要终生照顾,甚至可能不说话;另一类是病情较轻,最终发展出良好的语言能力和社交关系。科学家们还无法确定为什么会存在至少两类自闭症患者。他们也无法在产前识别自闭症儿童,更不用说预测他们的病情可能有多严重了。现在,库尔切森和穆奥特里已经确定大脑过度生长始于子宫内,他们希望找出其原因,以便开发出一种疗法,缓解这种疾病患者的智力和社交功能。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434857.htm手机版:https://m.cnbeta.com.tw/view/1434857.htm

封面图片

研究发现提高帕金森病风险的基因突变也抑制了细胞的清理工作

研究发现提高帕金森病风险的基因突变也抑制了细胞的清理工作在被称为轴突的神经细胞部分的末端,有一个突触前终端。在这里,神经冲动被转化为神经递质,后者携带信号穿过两个神经元之间的突触,或一个神经元与一个肌肉细胞或腺体之间的突触。突触上密布着蛋白质,为发生在那里的新陈代谢活动提供能量。它们也是脆弱的结构。维持神经传递所需的代谢活动的强度会对细胞造成压力和损害。如果受损的细胞没有被称为自噬的过程所清除,就会导致细胞碎片的有毒堆积和神经元的死亡,这两种情况都出现在帕金森病中。澳大利亚昆士兰大学的一项新研究考察了自噬功能失调是如何导致神经元退化的。研究人员意识到,当细胞破裂时,它们会发出信号,产生一种叫做内皮素-A(EndoA)的蛋白质,开始清理大脑中的细胞碎片。昆士兰大脑研究所的AdekunleBademosi博士和该研究的主要作者说:"我们知道我们可以通过饿死细胞的氨基酸来诱导细胞自噬,随后的碎片分解告诉一种叫做EndoA的蛋白质接近细胞膜并开始回收过程。"他们的研究导致了一种基因突变的发现,这种基因突变与帕金森病风险的增加和大脑中细胞碎片的堆积有关。Bademosi说:"我们的团队已经发现,一个与帕金森病有关的突变在一个名为Endophilin-A1的基因中阻止了身体和大脑回收细胞废物的过程。不幸的是,当帕金森病患者的内皮素-A1基因受到影响时,蛋白质EndoA对突触处的这种触发因素变得不敏感,本应被扔出去回收的碎片反而堆积起来。"该研究的结果表明,应该放弃对帕金森病的传统治疗方法,而专注于解决可能成为该病症基础的细胞碎片堆积问题。"现在可能是时候将治疗重点转向自噬,作为这些疾病特征的基础机制。探索使用诱导或抑制自噬的化合物可能为新的、更有效的帕金森病药物铺平道路"。该研究发表在《神经元》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1346601.htm手机版:https://m.cnbeta.com.tw/view/1346601.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人