贻贝蛋白涂层可使植入体免受感染

贻贝蛋白涂层可使植入体免受感染即使在粗糙的潮间带,贻贝也能牢牢地附着在岩石上,这要归功于一种名为DOPA的氨基酸一些研究小组已经开发出了用于植入物的抗生素涂层--使植入物摆脱最初的易感染状态--不过,其中一些物质会持续释放抗生素有效成分,而不管植入部位处于何种状态。这种滥用药物的做法会导致细菌产生抗药性,从而降低抗生素的效果。为了寻找一种选择性更强、更持久的替代品,韩国科学家团队研究了贻贝用来粘附在岩石上的蛋白质。研究人员创造了一种生物工程MAP(贻贝粘合蛋白),它能大量表达一种名为DOPA的天然氨基酸。此外,这种生物工程MAP还添加了庆大霉素(一种常用抗生素)和铁离子。在健康的植入部位条件下,DOPA与离子形成牢固的结合,将离子和庆大霉素牢牢地包裹在由MAP制成的耐用水凝胶涂层中。然而,当有害细菌侵入时,它们会增加该部位的酸度。由于pH值降低,DOPA和铁离子之间的结合力减弱,导致铁离子和庆大霉素释放出来。这样,抗生素就能释放出来,杀死该区域的所有细菌。但重要的是,涂层释放的庆大霉素只与感染程度成正比--如pH值所示。在动物试验中,涂层在金黄色葡萄球菌感染后8小时内释放出70%的抗生素有效成分,有效消灭了所有微生物。即使在机械应力作用下,它也能牢牢地粘附在钛植入物上,并在整个骨再生阶段(约四周)保持有效。首席科学家、浦项科技大学(POSTECH)的HyungJoonCha教授说:"粘性植入涂层材料的即时和持续抗菌效果有望显著提高植入手术的成功率。"有关这项研究的论文最近发表在《生物材料》杂志上,庆北大学校的科学家也参与了这项研究。相关文章:科学家开发新型粘合剂结合贻贝的粘性和蜘蛛丝的强度科学家开发基于贻贝黏附蛋白的生物粘合剂用于无疤痕皮肤移植技术受贻贝启发的粘合剂可在植入物和骨骼之间建立粘合关系科学家混用贻贝和蚕的蛋白质开发出了一种内伤用敷料...PC版:https://www.cnbeta.com.tw/articles/soft/1422548.htm手机版:https://m.cnbeta.com.tw/view/1422548.htm

相关推荐

封面图片

新型"智能"植入涂层可预警早期故障并抗感染

新型"智能"植入涂层可预警早期故障并抗感染伊利诺伊大学厄巴纳-香槟分校开发的骨科植入物智能涂层一面是杀灭细菌的纳米柱,另一面是应变映射柔性电子元件。这可以帮助医生指导病人康复,并在设备出现故障前进行维修或更换。资料来源:伊利诺伊大学贝克曼ITG在《科学进展》(ScienceAdvances)杂志的一项新研究中,一个多学科研究小组发现,这种涂层能防止活体小鼠感染,并能绘制应用于羊脊柱的商业植入物的菌株图,以警告各种植入物或愈合失败。研究负责人、伊利诺伊大学材料科学与工程系教授QingCao说:"这是生物启发纳米材料设计与柔性电子学的结合,可解决复杂、长期的生物医学问题。"Cao说,感染和设备故障都是骨科植入物的主要问题,每种问题都会影响多达10%的患者。他说,人们已经尝试了几种抗感染的方法,但都有严重的局限性:拒水表面仍会形成生物膜,含有抗生素化学物质或药物的涂层在几个月内就会耗尽,对周围组织产生毒害作用,对抗药性细菌病原体的效果甚微。伊利诺斯州的研究小组从蝉和蜻蜓的天然抗菌翅膀中汲取灵感,创造出一种薄薄的箔片,上面的纳米级支柱就像昆虫翅膀上的一样。当细菌细胞试图与箔片结合时,支柱会刺穿细胞壁,杀死细菌。这项研究的共同作者、病理生物学教授吉-刘(GeeLau)说:"使用机械方法杀灭细菌让我们绕过了化学方法的许多问题,同时还让我们能够灵活地将涂层应用到植入物表面。"在纳米结构箔片接触植入装置的背面,研究人员集成了高灵敏度的柔性电子传感器阵列,用于监测应变。研究人员说,这可以帮助医生观察每个病人的愈合进度,指导他们进行康复治疗,以缩短康复时间并将风险降到最低,还可以在设备出现故障前进行维修或更换。工程小组随后与兽医临床医学教授安妮特-麦考伊(AnnetteMcCoy)合作测试了他们的原型设备。他们将薄膜植入活体小鼠体内,监测它们是否出现任何感染迹象,甚至在引入细菌时也是如此。他们还将涂层应用于市场上销售的脊柱植入物,并监测植入物在正常负荷下对绵羊脊柱的应变,以诊断装置故障。涂层很好地完成了这两项功能。原型电子器件需要线缆,但研究人员下一步计划为涂层开发无线供电和数据通信接口,这是临床应用的关键一步。他们还在努力开发纳米柱纹理杀菌箔的大规模生产。Cao说:"这些类型的抗菌涂层有很多潜在的应用,由于我们的涂层使用的是机械机制,因此它有可能应用于化学物质或重金属离子(目前商业抗菌涂层中使用的化学物质或重金属离子)会造成危害的地方。"...PC版:https://www.cnbeta.com.tw/articles/soft/1371753.htm手机版:https://m.cnbeta.com.tw/view/1371753.htm

封面图片

由昆虫翅膀启发的涂层可以制造出更好的骨和关节植入物

由昆虫翅膀启发的涂层可以制造出更好的骨和关节植入物受蜻蜓和蝉翼的启发,研究人员开发了一种用于骨科植入物的新涂层。它不仅能杀灭有害细菌,还能监测系统的压力,这意味着它可以警告即将发生的植入物故障。伊利诺伊大学厄巴纳-香槟分校(UI)的研究人员再次向大自然寻求涂层解决方案,他们从蜻蜓和蝉的对抗细菌的翅膀中找到了解决骨科植入物产生的一个顽固问题:感染。据这项研究的负责人、UI的材料科学和工程教授QingCao说,一直以来都没有足够的方法来处理影响多达10%的植入物患者在植入物层面的感染。他说,目前使用重金属离子来对抗细菌的努力也会对附近的组织造成损害,而且涂有抗生素药物的植入物最终会在化学品耗尽时失效。它们也不能有效地对抗抗生素耐药菌,这在医学界是一个日益严重的问题。因此,Cao和他的团队创造了一种用于植入物的薄箔涂层,其一面由纳米柱组成,如昆虫翅膀上的那些。当细菌细胞接触到这些柱子时,它们会被刺穿并失去活力。该研究的合著者、病理生物学教授GeeLau说:"使用机械方法来杀死细菌,使我们能够绕过化学方法的很多问题,同时仍然给予我们将涂层应用于植入物表面所需的灵活性。"一举两得研究人员不满足于只解决骨科植入物的一个问题,他们意识到他们的涂层可以解决另一个问题:设备故障。Cao说,这个问题也影响到所有接受植入物的患者中的10%。因此,在薄膜的另一面,研究人员嵌入了灵活的微传感器,能够测量应用了涂层的植入物的机械应力。研究人员说,这不仅可以让医生知道身体在植入物周围的愈合情况,而且可以在人工关节的压力过大时发出警报。在动物试验中,这种涂层表现良好,可以抵御小鼠身上的细菌,并从绵羊的脊柱植入物中发送压力信号。虽然目前的涂层需要一个外部电源,但研究人员说他们现在正在研究一个无线解决方案。该涂层被应用于绵羊的标准脊柱植入物,在那里它成功地测量了机械应力Cao说:"这些类型的抗菌涂层有很多潜在的应用,由于我们的涂层使用的是机械机制,它有可能用于化学品或重金属离子--如现在商业抗菌涂层中使用的--会造成损害的地方。"这项研究已经发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1358833.htm手机版:https://m.cnbeta.com.tw/view/1358833.htm

封面图片

受贻贝启发的粘合剂可在植入物和骨骼之间建立粘合关系

受贻贝启发的粘合剂可在植入物和骨骼之间建立粘合关系3D打印机将多巴胺基粘合剂应用到髋关节的三维钛轴上图/弗劳恩霍夫CMI人工髋关节等植入物的问题之一是,随着时间的推移,钛植入物会从与其粘合的骨头上脱落。这时就需要进行第二次手术来重新连接或更换植入物。多年来,不同的研究小组一直在寻找避免这种情况发生的方法。由贻贝启发的胶水是最新也是最有趣的例子之一。这种生物相容性物质由德国弗劳恩霍夫研究小组的科学家开发,可以直接用三维打印技术打印到钛植入物的曲面上,确保植入物/骨界面的涂层均匀。它主要由含有多巴胺的合成聚合物组成。多巴胺分子是二羟基苯丙氨酸的化学类似物(即具有相似的结构),而二羟基苯丙氨酸是贻贝产生的关键氨基酸,是其天然粘合剂的一部分。这种胶水还含有矿物质颗粒、蛋白质和信号分子等添加剂,可使患者的身体将其识别为类似骨骼的物质。因此,邻近骨组织的细胞很容易长入其中,据说这样就能确保牢固持久的粘合。此外,多巴胺还具有抗菌作用,可最大限度地降低植入部位的感染几率。最后,这种胶水还可以改性,只有在紫外线照射下才会硬化。这意味着外科医生可以慢慢地对准植入物,然后在植入物完全就位后用紫外线灯将其锁定。今后,还可以打开或关闭粘合效果,以便在必要时重新定位种植体。...PC版:https://www.cnbeta.com.tw/articles/soft/1402677.htm手机版:https://m.cnbeta.com.tw/view/1402677.htm

封面图片

特殊的钛合金让植入体抵御细菌感染

特殊的钛合金让植入体抵御细菌感染近年来,多个研究小组开发出了可用于钛植入物的抗菌涂层。虽然其中一些涂层确实很有前景,但它们可能会随着时间的推移而磨损。此外,将它们应用到植入体上还会增加一个生产步骤。这就是新型3D打印材料的用武之地。这种材料由华盛顿州立大学的科学家开发,主要由传统的钛合金组成,但也含有3%的铜和10%的钽,后者是一种耐腐蚀金属。该研究的合著者之一AmitBandyopadhyay教授测试了这种材料在连续使用中的耐受性。当细菌接触到这种材料时,铜会导致细菌外膜破裂,从而杀死大部分细菌。同时,钽能促进邻近骨组织的生长。这一因素加快了愈合过程,缩短了感染发生的时间,当然,它也能让患者更快地恢复健康。在对实验鼠进行的测试中发现,由这种合金制成的植入物能杀死87%的接触感染性金黄色葡萄球菌。科学家们现在正努力将这一数字提高到99%以上,此外,他们还在评估这种材料制成的植入体在实际使用中的耐受性。"这种多功能装置的最大优势是,既能用于感染控制,又能实现良好的骨组织整合,"研究论文的共同作者苏斯米塔-博斯教授说。"因为感染是当今外科领域的一个大问题,如果任何多功能设备都能同时做到这两点,那就没有什么比它更合适的了"。该论文最近发表在《国际尖端制造杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1398487.htm手机版:https://m.cnbeta.com.tw/view/1398487.htm

封面图片

形状记忆植入物可使不能动弹的肌肉不致萎缩

形状记忆植入物可使不能动弹的肌肉不致萎缩纵向贯穿植入物的是一个由镍钛合金制成的弹簧。后者是一种形状记忆合金,在被机械拉伸到某一长度后会暂时保持该长度,但在被加热到某一温度后会恢复到其默认的较短长度。该弹簧被包裹在一个矩形弹性体基体中,该基体提供热绝缘,在不加热的情况下会将弹簧拉长。弹性体上的生物相容性粘合剂使其能够粘附在底层肌肉组织上。其想法是当病人的胳膊或腿因受伤或疾病(如多发性硬化症)而无法动弹时,通过手术将MAGENTA植入肢体的目标肌肉。一个独立的(但有硬线连接的)微处理器/电池植入物随后定期向MAGENTA提供电流,加热镍合金弹簧并使其收缩。当它这样做时,肌肉(和弹性体)也随之收缩。当电流再次关闭时,弹性体将弹簧以及肌肉拉回。在实验室测试中,小鼠将该装置的一个微小版本植入一条后腿的小腿肌肉,然后将该腿固定在一个类似石膏的装置中,时间长达2周。实验的结果证明,这种想法是有希望的。"虽然未经治疗的肌肉和用该设备治疗但未受刺激的肌肉在这一时期明显消瘦,但主动刺激的肌肉显示出肌肉消瘦的减少,"关于这项研究的论文的第一作者SungminNam博士说。"我们的方法还可以促进在三周的固定期间已经损失的肌肉质量的恢复,并诱导激活已知的引起蛋白质合成和肌肉生长的主要生化机械传导途径。"另外研究人员还发现,MAGENTA不需要与电源硬连接,而是可以通过激光照射其上的皮肤来无线激活。采取这种方法目前还不如通过电流加热弹簧有效,但希望一旦技术得到进一步发展,这种情况可能会改变。高级作者DavidMooney博士说:"虽然该研究首次提供了概念证明,即外部提供的拉伸和收缩运动可以防止动物模型的萎缩,但我们认为该设备的核心设计可以广泛适用于萎缩是一个主要问题的各种疾病环境。"这篇论文最近发表在《自然材料》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1332799.htm手机版:https://m.cnbeta.com.tw/view/1332799.htm

封面图片

科学家发现的伞状蛋白质能靶向杀死特定细菌 有望治疗耐药性感染

科学家发现的伞状蛋白质能靶向杀死特定细菌有望治疗耐药性感染伞状抗菌毒素颗粒飘向细菌靶细胞并与之接触。这些毒素来自链霉菌,能有效抑制同属竞争物种的生长。资料来源:AngelaGao抗生素与细菌战具有讽刺意味的是,临床上使用的许多抗生素都直接来源于细菌在自然栖息地中用来对付对方的分子,或受到这些分子的启发。链丝菌用来对付竞争对手的化学武器是此类分子最丰富的来源之一。其中包括常见的广谱药物链霉素。这些新发现的抗菌毒素的不同之处在于,与链丝菌的小分子抗生素不同,伞状毒素是由多种蛋白质组成的大型复合物。与小分子抗生素相比,它们针对细菌的特异性也更强。《自然》论文的作者推测,伞状毒素的这些特性解释了为什么在对链丝菌产生的毒素进行长达100多年的研究中,这些毒素一直没有被发现。生物信息学和低温电子显微镜揭示新观点编码伞状毒素的基因最初是通过生物信息学搜索新的细菌毒素而发现的。在华盛顿大学医学院约瑟夫-穆格斯(JosephMougous)微生物实验室的赵琴琴领导的生化和遗传实验中,科学家们了解到这些毒素与其他蛋白质结合成一个大型复合体。这些蛋白质复合物的冷冻电子显微镜由YoungPark在华盛顿大学医学院生物化学教授、霍华德-休斯医学研究所研究员DavidVeesler的实验室中完成。这些研究表明,秦琴分离出的毒素复合物具有与在西雅图发现的毒素复合物相称的醒目外观。它们看起来像雨伞。独特的结构和特异性华大医学院微生物学教授、霍华德-休斯医学研究员穆格斯指出:"这些微粒的形状非常奇特,在未来的工作中,了解它们不同寻常的形态如何帮助它们消灭目标细菌将是一件非常有趣的事情。"随后,科学家们试图确定这些毒素的靶标,他们筛选了这些毒素对所有生物的影响,从真菌到140种不同的细菌,包括研究作者德文-科尔曼(DevinColeman)在加州大学伯克利分校和美国农业部农业研究服务处的实验室中从高粱植物中提取的一些细菌。.在这些潜在的对手中,这些毒素专门针对自己的同类:其他链丝菌。"我们认为,这种精湛的特异性可能是由于组成伞辐条的蛋白质各不相同。"研究报告的作者、穆格斯实验室的资深科学家布鲁克-彼得森(S.BrookPeterson)评论说:"这些蛋白质可能会吸附在竞争细菌表面的特定糖分上。"通过分析数千个公开的细菌基因组,研究报告的作者、圣路易斯大学的张大鹏(DapengZhang)和他的研究生谭英俊(YoungjunTan)发现,许多其他种类的细菌也有制造伞状颗粒毒素的基因。有趣的是,这些物种都形成了枝状菌丝,这在细菌中是一种不常见的生长模式。潜在的临床应用和更广泛的影响除了伞状毒素颗粒的基础生物学方面还有许多问题有待解答外,穆格斯和他的同事们对其潜在的临床应用也很感兴趣。他们怀疑导致肺结核和白喉的细菌可能对伞状毒素敏感。他们注意到这些细菌已经对传统抗生素产生了抗药性。科学家们认为,伞状毒素颗粒有可能制服这些严重的致病细菌,因此值得研究。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427951.htm手机版:https://m.cnbeta.com.tw/view/1427951.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人