天文学家通过分析引力波揭开中子星合并的热能秘密

天文学家通过分析引力波揭开中子星合并的热能秘密当两颗中子星相互绕行时,它们会在时空中释放出称为引力波的涟漪。这些涟漪会消耗轨道的能量,直到两颗恒星最终相撞并合并成一个天体。科学家们利用超级计算机模拟探索了不同核物质模型的行为如何影响这些合并后释放的引力波。他们发现,残余物的温度与这些引力波的频率之间存在很强的相关性。下一代探测器将能够区分这些模型。中子星合并后约5毫秒,从上往下看,两种不同模拟中子星合并(上、下)的密度(右)和温度(左)对比图。资料来源:宾夕法尼亚州立大学雅各布-菲尔兹(JacobFields)。科学家利用中子星作为实验室,在地球上无法探测的条件下研究核物质。他们利用目前的引力波探测器来观测中子星合并,了解超密集冷物质的行为方式。然而,这些探测器无法测量恒星合并后的信号。这个信号包含了热核物质的信息。未来的探测器将对这些信号更加敏感。由于它们还能区分不同的模型,这项研究的结果表明,未来的探测器将帮助科学家们建立更好的热核物质模型。这项研究使用THC_M1对中子星合并进行了研究。THC_M1是一种模拟中子星合并的计算机代码,它考虑到了恒星强大引力场造成的时空弯曲以及致密物质中的中微子过程。研究人员通过改变状态方程中的比热容来测试热效应对合并的影响,比热容用于测量中子星物质温度上升一度所需的能量。为了确保结果的稳健性,研究人员以两种分辨率进行了模拟。他们用更近似的中微子处理方法重复了更高分辨率的运行。参考文献《双中子星合并中的热效应》,作者:JacobFields、AviralPrakash、MatteoBreschi、DavidRadice、SebastianoBernuzzi和AndrédaSilvaSchneider,2023年7月31日,《天体物理学杂志通讯》。DOI:10.3847/2041-8213/ace5b2《低三动量传递时中子-碳相互作用中核效应的识别》,2016年2月17日前,《物理评论快报》。DOI:10.1103/PhysRevLett.116.071802这项工作使用了宾夕法尼亚州立大学国家能源研究科学计算中心、匹兹堡超级计算中心和计算与数据科学研究所提供的计算资源。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404551.htm手机版:https://m.cnbeta.com.tw/view/1404551.htm

相关推荐

封面图片

天文学家发现存在仅几毫秒的巨型中子星

天文学家发现存在仅几毫秒的巨型中子星这个物体是什么取决于总质量。一颗中子星的最大质量刚刚超过两个太阳,然后它就会在自身的引力下坍塌,形成一个黑洞--所以如果两颗中子星的总质量低于这个极限,它们就会形成一颗新的中子星。如果质量更高,则碰撞将产生一个黑洞。在新的研究中,天文学家检测到两颗中子星之间的合并导致了黑洞。然而,他们还发现了一个耐人寻味的中间阶段的信号--只存在短短几毫秒的超重中子星。根据对中子星合并的计算机模拟,如果形成了超重中子星,在事件中抛出的引力波中出现一种被称为准周期振荡(QPO)的特定模式。虽然目前的观测站还没有敏感到可以在引力波中探测到这些,但新研究的团队确定,它们的指纹也会在伽马射线中显示出来。为了测试这个想法,天文学家们扫描了三个天文台在过去几十年中捕获的700个短伽马射线暴(GRB)的档案数据。果然,伽马射线QPOs出现在康普顿伽马射线天文台捕获的两个事件中--一个发生在1991年7月,另一个发生在1993年11月。研究小组计算出,被探测到的超重中子星的质量超过太阳的2.5倍,并且在坍缩成黑洞之前将持续不超过300毫秒的时间。它们的旋转速度也会非常快--如果它们持续那么久的话,几乎是每分钟78000转。相比之下,旋转速度最快的脉冲星的时钟低于43000转。该团队表示,未来的引力波探测器应该变得足够敏感,可以直接发现超重中子星的特征,这可能有助于提供关于这些超短命物体的新信息。该研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1338723.htm手机版:https://m.cnbeta.com.tw/view/1338723.htm

封面图片

天文学家分析中子星合并过程 揭开宇宙重元素诞生的原理

天文学家分析中子星合并过程揭开宇宙重元素诞生的原理这次大爆炸释放出了一个伽马射线暴--GRB230307A,是50年观测中第二亮的伽马射线暴,比一般的伽马射线暴亮1000倍左右。GRB230307A于2023年3月7日首次被美国宇航局的费米伽马射线太空望远镜探测到。科学家们利用多台太空和地面望远镜,包括美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)--有史以来发射到太空的最大、最强大的望远镜--能够在天空中精确定位伽马射线暴的源头,并追踪其亮度的变化情况。根据收集到的信息,研究人员确定这次爆发是两颗中子星在距离地球10亿光年的星系中合并形成千新星的结果。研究人员观察到了碲的证据,碲是地球上最稀有的元素之一。这一突破性发现使天文学家离解开比铁更重的元素的起源之谜又近了一步。"我是一名高能天体物理学家。我喜欢爆炸。我喜欢爆炸产生的伽马射线。但我也是一个真正关心基本问题的天文学家,比如重元素是如何形成的,"哈特曼说。克莱姆森大学物理和天文学系教授迪特尔-哈特曼。资料来源:克莱姆森大学伽马射线暴(GRBs)是伽马射线光的爆发,是光中能量最高的一种,持续时间从几秒到几分钟不等。最早的伽玛射线暴是在20世纪60年代由用于监测核试验的卫星探测到的。全球红外探测器的成因各不相同。长持续时间的全球记录光暴发是由超新星引起的,超新星是指一颗大质量恒星到达其生命尽头并爆发出光的时刻。持续时间较短的古雷暴是由两颗中子星合并(称为千新星)或一颗中子星和一个黑洞合并产生的。虽然GRB230307A只持续了200秒,但科学家们看到余辉的颜色从蓝色变成了红色,这是千新星的特征。"爆发本身实际上表明这是一个持续时间很长的事件,它应该是一个正常的超新星类型。但它有不寻常的特征。它不太符合长爆发的模式,"哈特曼说。"事实证明,这个放射性云团,这个千新星余辉,其中有所有这些核合成指纹,是双星合并的特征。令人兴奋的是,我们利用韦伯望远镜识别出了一种化学指纹,我们原本以为这种指纹会出现在短爆发中,但却在长爆发中看到了它。"哈特曼说,宇宙大爆炸产生了氢和氦。所有其他元素都是由恒星和星际介质中的过程产生的。"有些恒星的质量大到足以爆炸,它们会把这些物质送回气态环境,然后再制造新的恒星。因此,宇宙中存在着一种循环,它使我们的碳、氮、氧以及我们所需的所有物质变得更加丰富,我们称恒星为宇宙的大锅。"热核反应或聚变使恒星闪闪发光,这导致了更多重元素的相继产生。他说,轮到铁的时候,就没有多少能量可以挤出来了。那么,金和铀等重元素从何而来?"重元素有着特殊的起源。主要有两个过程。一个叫做快速过程,另一个叫做慢速过程。哈特曼说:"我们认为r过程发生在那些中子星合并中。"理论建模表明千新星当中应该产生碲,但詹姆斯-韦伯太空望远镜探测到的光谱线提供了实验证据。光谱线是连续光谱中的一条暗线或亮线。它是由原子或离子内部的跃迁产生的。哈特曼说:"我们认为这是一个相当可靠的鉴定,但并不能够像法庭上所说的那样排除合理怀疑。"研究的详细结果见科学杂志《自然》上发表的题为"JWST观测到的紧凑天体合并中的重元素生成"的论文:https://www.nature.com/articles/s41586-023-06759-1编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422941.htm手机版:https://m.cnbeta.com.tw/view/1422941.htm

封面图片

天文学家观察灾难性的中子星合并 以了解宇宙中元素的起源

天文学家观察灾难性的中子星合并以了解宇宙中元素的起源尽管如此,科学家们还没有确定中子星合并产生的确切元素,只有锶除外,它已经在光学光谱中被确定。东北大学研究生院的研究生和日本科学促进会(JSPS)的研究员NanaeDomoto带领一个研究小组,仔细分析了所有重元素的特性,以解码来自中子星合并的光谱,结果显示,稀土元素的合成在中子星合并的数据中得到证实。千新星(一类发生于双致密天体并合过程中的暂现天文事件)的观测光谱(灰色)和本研究中获得的模型光谱(蓝色)。左边的数字表示中子星合并发生后的天数。虚线表示吸收线的特征。产生这些特征的元素的名称与虚线的颜色相同。为了直观起见,光谱被垂直移位了。观察到的1400纳米和1800-1900纳米左右的光谱受到地球大气层的影响。资料来源:NanaeDomoto他们以此来研究来自GW170817的千新星--由合并过程中喷出的新鲜合成核的放射性衰变引起的明亮光谱。基于对日本国家天文台的超级计算机"ATRUIII"产生的详细千新星光谱模拟的比较,研究人员发现,稀有元素镧和铈可能再现了2017年见证的近红外光谱特征。需要注意的是,到目前为止,稀土元素的存在只是根据千禧年的整体亮度演变来假设的,而不是从光谱特征来假设的。"这是第一次在中子星合并的光谱中直接确定稀有元素,它推进了我们对宇宙中元素起源的理解,"Dotomo说。"这项研究使用了一个简单的喷出物质模型。展望未来,我们希望考虑到多维结构,以掌握恒星碰撞时发生的更大的情况。"...PC版:https://www.cnbeta.com.tw/articles/soft/1334365.htm手机版:https://m.cnbeta.com.tw/view/1334365.htm

封面图片

天文学家观察中子星暴力碰撞产生的千新星事件 揭开金和其他重元素的起源

天文学家观察中子星暴力碰撞产生的千新星事件揭开金和其他重元素的起源这幅艺术家的作品展示了两颗中子星碰撞产生的千新星。资料来源:NOIRLab/NSF/AURA/J.daSilva/Spaceengine在《欧洲物理杂志D》(TheEuropeanPhysicalJournalD)发表的一篇新论文中,耶拿亥姆霍兹研究所的博士后研究员安德烈-邦达列夫(AndreyBondarev)、罗马的博士后研究员詹姆斯-吉兰德斯(JamesGillanders)和他们的同事研究了千新星AT2017gfo的光谱,通过寻找其禁止跃迁引起的光谱特征,研究金属的起源。邦达列夫说:"我们的研究已经证明,精确的原子数据,特别是对于许多元素都未知的禁用磁偶极子和电四极子跃迁的数据,对于千新星分析非常重要。通过使用线性化耦合簇和构型相互作用相结合的方法计算单电离锡中的大量能级和它们之间的多极跃迁速率,我们生成了一个原子数据集,可用于未来的天体物理分析。"研究小组的研究表明,单电离锡的基态双态电平之间的磁偶极转变导致了千新星发射光谱中一个突出的可观测特征。Gillanders解释说:"尽管这与AT2017gfo光谱中的任何突出特征并不匹配,但它仍可用作未来千新星事件的探测器。能够确定的元素越多,我们就越接近于了解这些不可思议的宇宙爆炸"。研究小组指出,千新星事件只是最近才被观测到的现象,2017年才首次获得光谱观测结果。更好的原子数据如本研究提供的数据,对于更好地理解与中子星合并相关的爆炸碰撞至关重要。Gillanders总结说:"我们希望我们的工作能以某种方式促进我们对宇宙中最重元素产生过程的理解。我们渴望发现新的千新星和相关的新观测数据,这将使我们能够加深对这些事件的理解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1373091.htm手机版:https://m.cnbeta.com.tw/view/1373091.htm

封面图片

天文学家提出测量宇宙膨胀的新方法

天文学家提出测量宇宙膨胀的新方法解决方案的关键在于研究引力波,即天文学家于2015年首次探测到的时空涟漪。研究小组研究了引力本身如何影响引力波。当一对黑洞在宇宙舞蹈中合并成一个黑洞时,它们会发出引力波。当它们到达地球时,千米长的探测器帮助科学家研究黑洞对的特性。占据黑洞和地球之间空间的巨大星系改变了这些时空涟漪的路径,导致探测器记录到多份相同的波。天文学家称这种现象为引力透镜。这项研究的合著者帕拉梅斯瓦兰-阿吉斯(ParameswaranAjith)说:"一个多世纪以来,我们一直在观测光的引力透镜现象。我们期待在未来几年内首次观测到透镜引力波!"引力波强透镜图形。资料来源:ParameswaranAjith(ICTS)未来二十年,科学家们将开始运行先进的引力波探测器,寻找合并黑洞。"未来的探测器将能够看到比现有探测器大得多的距离,"该研究的合著者之一、来自普纳天文学和天体物理学大学间中心的沙斯瓦特-J-卡帕迪亚解释说。该研究的另一位合著者、来自加州大学圣巴巴拉分校的TejaswiVenumadhav说,他们将能够探测到较弱的引力波信号,这些信号被埋没在影响现有探测器的噪声中。天文学家估计,先进的探测器将记录下几百万个黑洞对发出的信号,每个黑洞对都会合并形成一个超大型黑洞。其中,由于引力透镜作用,约有1万个黑洞合并将在同一个探测器中出现不止一次。苏维克领导的研究小组证明,通过计算这种重复黑洞合并的数量和研究它们之间的延迟,他们可以测量宇宙的膨胀率。随着未来二十年中来自先进引力波探测器的数据逐渐增多,他们的方法有可能精确测量出宇宙的膨胀率。苏维克说,研究小组的建议不需要知道产生多份引力波的单个星系的特性、与黑洞对的距离,甚至不需要知道它们在天空中的确切位置。相反,它只需要一种精确的方法,就能知道哪些信号受到了透镜作用。沙斯瓦特补充说,科学家们正在改进识别重复信号的技术。引力透镜要求天文源距离很远。这些黑洞对符合这一标准,它们可能来自133亿年前,也就是宇宙诞生后不到5亿年的地方。沙斯瓦特提醒说,只有当先进的探测器记录下数百万个黑洞合并时,他们提出的方法才会有所帮助。目前,研究小组正在研究这种未来的观测如何能够区分宇宙学家提出的不同宇宙模型。研究小组解释说,这些模型试图解开难以捉摸的暗物质之谜,暗物质是一种不与光相互作用的物质。暗物质假说解决了天文学家的难题,即解释为什么星系具有观测到的质量。然而,科学家们仍然无法确定暗物质的特性,因此产生了各种暗物质模型。研究小组正在进行的研究表明,未来对透镜引力波的观测将成为研究暗物质特性的工具。...PC版:https://www.cnbeta.com.tw/articles/soft/1375607.htm手机版:https://m.cnbeta.com.tw/view/1375607.htm

封面图片

天文学家首次成功测量了太空中快速运动的喷流速度

天文学家首次成功测量了太空中快速运动的喷流速度这幅艺术家的印象图描绘了中子星上的核爆炸如何为从其磁极区喷射出的喷流提供能量。前景右侧中央有一个非常明亮的白球,代表中子星。白色/紫色细丝从它的极区流出。球的周围是一个朦胧的白色大球,即日冕,再往外则是一个圆盘,圆盘上有不同颜色的同心带,从圆盘内部的白色到中间的橙色,再到外部的红-洋红。一条橙色带将圆盘的外围部分与左上角的一个黄色-橙色-红色的大球体部分连接起来。这代表了中子星的伴星,为明亮的白色球体周围的圆盘提供能量。资料来源:DanielleFutselaar和NathalieDegenaar,阿姆斯特丹大学安东-潘内科克研究所共同作者、华威大学物理系华威奖研究员雅各布-范登-艾因登(JakobvandenEijnden)说:"爆炸发生在中子星上,中子星密度惊人,因其巨大的引力而臭名昭著,这种引力使中子星从周围环境中吞噬气体--只有黑洞才能超越这种引力。""这些物质大部分是来自附近一颗环绕运行的恒星的氢,它们向坍缩的恒星旋转,像雪一样落在恒星表面。随着越来越多的物质倾泻而下,引力场将其压缩,直至引发失控核爆炸。爆炸冲击喷流,喷流也从下坠的物质中喷射而出,并以极高的速度将粒子射入太空"。研究小组设计了一种方法,通过比较澳大利亚望远镜紧凑阵列(由澳大利亚国家科学机构CSIRO拥有和运营)和欧洲航天局(ESA)的Integral卫星接收到的X射线和无线电信号,来测量喷流的速度和特性。共同作者、意大利巴勒莫国家天体物理研究所的托马斯-罗素说:"这为我们提供了一个完美的实验。我们有一个非常短暂的额外物质脉冲,它被射入喷流中,我们可以跟踪它在喷流中的移动,了解它的速度。"这段艺术动画展示了中子星上的核爆炸如何为其磁极区喷射出的射流提供能量。当中子星与另一颗恒星在轨道上运行时,中子星强大的引力场会"吸走"附近伴星的物质。这些物质卷向坍缩的天体,围绕着它形成一个圆盘,最终坠落到天体表面。中子星表面猛烈撞击的引力会压缩积累的物质(主要由氢组成),导致失控核爆炸。这反过来又引发喷流突然加强,并以极高的速度将粒子喷射到太空中。图片来源:ESA-欧洲航天局鸣谢:D:阿姆斯特丹大学的D.Futselaar和N.Degenaar。工作由ATGMedialab根据与欧空局的合同完成JakobvandenEijnden补充说:"这些爆炸每隔几个小时就会发生一次,但无法准确预测它们发生的时间。因此必须长时间盯着望远镜观测,希望能捕捉到几次爆发。在三天的观测中,我们看到了10次爆炸和喷射点亮。"喷射的飞行速度约为每秒11.4万公里,是光速的35-40%,快得令人难以置信。这是天文学家第一次能够预测并直接观察到一定量的气体是如何被导入喷流并加速进入太空的。共同作者、荷兰阿姆斯特丹大学的NathalieDegenaar继续说:"根据以前的数据,我们认为爆炸会破坏射流发射的位置。但我们看到的情况恰恰相反:喷流的输入量很大,而不是中断。"研究人员认为,中子星和黑洞的质量和旋转也会对喷流产生影响。现在,这项研究已经证明这是可能的,它将为未来研究中子星及其喷流的实验提供蓝本。超新星爆炸和伽马射线暴等灾难性事件也会产生喷流。这项新成果将在许多宇宙研究中具有广泛的适用性。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430448.htm手机版:https://m.cnbeta.com.tw/view/1430448.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人