科学家发明荧光探针 揭示细胞生物学"暗物质"的新奥秘

科学家发明荧光探针揭示细胞生物学"暗物质"的新奥秘糖在我们的生活中无处不在,几乎存在于我们吃的所有食物中。但这些简单碳水化合物的重要性远不止于美味的甜点。糖对生物体内几乎所有的生物过程都至关重要,天然存在的糖分子种类繁多。Cecioni说:"构成生物体的所有细胞都覆盖着一层称为糖的糖基分子。因此,糖几乎处于所有生理过程的第一线,在维持健康和预防疾病方面发挥着根本性的作用"。"锁和钥匙"图。资料来源:塞西奥尼实验室他补充说:"长期以来,科学家们认为细胞表面的复杂糖类只是一种装饰。但我们现在知道,这些糖与许多其他类型的分子相互作用,特别是与凝集素--一个庞大的蛋白质家族有着相互作用。"与糖类一样,凝集素也存在于所有生物体中。这些蛋白质具有独特的识别能力,能暂时附着在糖类上。这种相互作用发生在许多生物过程中,例如在感染引发的免疫反应过程中。最近,凝集素引起了人们的广泛关注。这是因为科学家们发现,凝集素"粘附"在糖类上的现象在许多疾病的出现中起着关键作用。塞乔尼说:"我们对糖和凝集素之间的相互作用研究得越多,就越能认识到它们在疾病过程中的重要性。研究表明,细菌在我们的肺部定植、病毒入侵我们的细胞,甚至癌细胞欺骗我们的免疫系统,使其误以为自己是健康细胞,都与这种相互作用有关。"难以检测......直到现在关于糖和凝集素之间的相互作用是如何展开的谜题仍有许多缺失,因为它们很难研究。这是因为这些相互作用是瞬时的、微弱的,因此检测是一项真正的挑战。塞西奥尼的两名学生,硕士研究生塞西尔-布施(CécileBousch)和博士研究生布兰登-弗勒兹(BrandonVreulz)想到了用光来检测这些相互作用。三位研究人员开始着手制造一种化学探针,能够"冻结"糖和凝集素之间的相遇,并通过荧光使其可见。糖和凝集素之间的相互作用可以用"锁和钥匙"的关系来描述,其中"钥匙"是糖,"锁"是凝集素。化学家们已经创造出了能够阻断这种"锁与钥匙"相互作用的分子,现在可以准确地识别出哪些糖与凝集素结合,这对人类健康具有重大意义。Cecioni解释说:"我们的想法是用发色团(一种赋予分子颜色的化学物质)标记糖分子。这种发色团实际上具有荧光性,这意味着如果糖与凝集素的结合被有效捕获,它就会发出荧光。科学家们就可以研究这些相互作用的内在机制以及可能产生的干扰"。塞西奥尼和他的学生相信,他们的技术可以用于其他类型的分子。他们甚至有可能控制新产生的荧光标记探针的颜色。通过将分子间的相互作用可视化,这一发现为研究人员提供了研究生物相互作用的宝贵新工具,其中许多相互作用对人类健康至关重要。...PC版:https://www.cnbeta.com.tw/articles/soft/1397829.htm手机版:https://m.cnbeta.com.tw/view/1397829.htm

相关推荐

封面图片

暗物质依然 "黑暗" - 科学家利用原子钟揭示新奥秘

暗物质依然"黑暗"-科学家利用原子钟揭示新奥秘PTB的研究人员利用灵敏的原子钟寻找超轻暗物质影响精细结构常数的证据,但没有发现明显的变化,从而完善了我们对暗物质潜在相互作用和常数随时间变化稳定性的理解。一种特别有前景的理论方法暗示,暗物质可能由极轻的粒子组成,其行为更像是波而不是单个粒子:即所谓的"超轻"暗物质。在这种情况下,以前未被发现的暗物质与光子之间的微弱相互作用将导致精细结构常数的微小振荡。精细结构常数是描述电磁相互作用强度的自然常数。它决定了原子能量标度,从而影响了原子钟中用作参考的转变频率。由于不同的跃迁对常数的可能变化具有不同程度的敏感性,因此原子钟的比较可用于寻找超轻暗物质。为此,PTB的研究人员现在使用了一种原子钟,它在这种搜索中对精细结构常数的可能变化特别敏感。为此,在长达数月的测量中,将这一灵敏的原子钟与灵敏度较低的另外两个原子钟进行了比较。测量数据被用于研究超轻暗物质的特征--振荡。由于没有发现明显的振荡,暗物质仍然是"暗"的,即使经过更仔细的检查也是如此。由于没有发现信号,因此无法探测到神秘的暗物质,但可以对超轻物质与光子之间可能的耦合强度确定新的实验上限,以前的上限在很大范围内提高了一个数量级以上。与此同时,研究人员还研究了精细结构常数是否会随着时间的推移而发生变化,例如非常缓慢地增加或减少。数据中没有检测到这种变化。在这里,现有的限制也被收紧,表明即使在很长一段时间内,常数也保持不变。与以往的时钟比较不同,在以往的比较中,每个原子钟都需要自己的实验系统,而在这项工作中,三个原子钟中的两个是在一个实验装置中实现的。为此,使用了单个被俘离子的两种不同跃迁频率:离子在两个光学转变频率上交替接受询问。这是朝着使光学频率比较更加紧凑和稳健迈出的重要一步--例如,用于未来在太空中寻找暗物质。...PC版:https://www.cnbeta.com.tw/articles/soft/1376071.htm手机版:https://m.cnbeta.com.tw/view/1376071.htm

封面图片

科学家揭示维生素D的抗衰老作用

科学家揭示维生素D的抗衰老作用在一项新研究中,来自釜山国立大学和韩国食品研究所的研究人员Joung-SunPark、Hyun-JinNa和Yung-JinKim旨在确定维生素D/维生素D受体途径在肠干细胞(ISC)老化过程中对分化肠细胞(EC)的保护作用。维生素D对中肠ISC中与年龄和氧化应激相关的超数中心体积累的抑制作用。资料来源:2024Parketal.研究人员指出:"本研究旨在利用成年果蝇肠道模型,确定VitD/VDR在ISC老化过程中对分化EC的保护作用。"研究人员利用成熟的果蝇中肠模型进行干细胞衰老生物学研究,发现维生素D受体基因敲除可诱导肠系膜细胞增殖、肠系膜细胞死亡、肠系膜细胞衰老和肠内分泌细胞分化。此外,年龄和氧化应激诱导的ISC增殖和中心体扩增也会因维生素D处理而减少。总之,这项研究提供了维生素D/VDR通路抗衰老作用的直接证据,包括在衰老过程中保护心肌细胞,并为探索果蝇健康衰老增强的分子机制提供了宝贵的见解。"我们的发现直接证明了维生素D/维生素D受体通路的抗衰老作用,并为果蝇健康衰老的分子机制提供了见解"。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426260.htm手机版:https://m.cnbeta.com.tw/view/1426260.htm

封面图片

科学家发现小胶质细胞在大脑发育过程中的关键功能

科学家发现小胶质细胞在大脑发育过程中的关键功能研究人员通过研究实验室培育的脑器官组织,发现了小胶质细胞在大脑发育过程中的重要作用。这项研究的重点是小胶质细胞对胆固醇的调节,它为大脑生长和治疗神经系统疾病的潜在方法提供了新的视角。(实验室培育的微型脑器官模型的艺术家概念图)。这项研究标志着人类脑器官组织的发展实现了重大飞跃,并有可能极大地影响我们对大脑发育和疾病的理解。这项题为"iPS细胞衍生的小胶质细胞通过胆固醇转移促进大脑类器官成熟"的研究于2023年11月1日发表在《自然》(Nature)杂志上。类器官研究的突破为了研究小胶质细胞在人类早期大脑发育中的关键作用,弗洛伦特-金豪斯(FlorentGinhoux)教授领导的A*STAR新加坡免疫学网络(SIgN)的科学家们利用尖端技术,在实验室中创造了被称为类器官(organoids)的类脑结构,也被称为"迷你大脑"。这些大脑有机体与人类大脑的发育非常相似。然而,以前的模型缺乏小胶质细胞,而小胶质细胞是大脑早期发育的关键组成部分。标有线粒体(黄色)、细胞核(品红色)和肌动蛋白丝(青色)的人类干细胞衍生小胶质细胞的超分辨率图像。这些小胶质细胞有助于人脑类器官模型中神经元的成熟。资料来源:A*STAR的SIgN为了弥补这一差距,A*STAR的研究人员设计了一种独特的方案,引入由用于创建脑器官模型的相同人类干细胞生成的小胶质细胞。这些引入的细胞不仅表现得像真正的小胶质细胞,而且还影响了有机体内其他脑细胞的发育。蛋白质组分析和胆固醇的作用A*STAR分子与细胞生物学研究所(IMCB)的拉多斯瓦夫-索博塔(RadoslawSobota)博士和他在新加坡质谱国家实验室(SingMassNationalLaboratoryforMassSpectrometry)的团队采用最先进的定量蛋白质组学方法来揭示蛋白质的变化。他们的分析为了解有机体的蛋白质组成提供了重要依据,进一步证实了研究结果。这项研究的与众不同之处在于发现了小胶质细胞与其他脑细胞相互作用的独特途径。研究发现,小胶质细胞在调节大脑中胆固醇水平方面起着至关重要的作用。研究发现,小胶质细胞样细胞含有含有胆固醇的脂滴,这些脂滴被释放出来,并被器官组织中其他发育中的脑细胞吸收。这种胆固醇交换被证明能显著促进这些脑细胞,尤其是其祖细胞的生长和发育。胆固醇在大脑中含量丰富,约占人体总胆固醇含量的25%。胆固醇对神经元的结构和功能至关重要。胆固醇代谢异常与多种神经系统疾病有关,包括阿尔茨海默氏症和帕金森氏症。为了研究脂质在大脑发育和疾病中的作用,马库斯-温克(MarkusWenk)教授领导的新加坡国立大学医学院(NUSMedicine)生物化学系的研究人员承担了数据采集的重要任务,特别是在脂质组学领域,以便对含有小胶质细胞的大脑有机体内的脂质组成和动态有宝贵的见解。洞察脑细胞的生长和发育利用这些信息,由VeroniqueAngeli副教授领导的新加坡国立大学医学部微生物学与免疫学系的另一个研究小组发现,胆固醇会影响人脑模型中年轻脑细胞的生长和发育。小胶质细胞使用一种特殊的蛋白质来释放胆固醇,当这一过程被阻断时,就会导致类器官细胞生长得更多,从而形成更大的大脑模型。"人们一直都知道小胶质细胞是大脑发育的关键,但对它们的确切作用仍然知之甚少。我们微生物学和免疫学系团队的这一发现尤其具有影响力,因为我们终于了解了胆固醇是如何运输的。"新加坡国立大学医学部免疫学转化研究项目主任Veronique副教授补充说:"我们下一步的重点将是研究如何调节胆固醇的释放,以优化大脑发育,减缓或预防神经系统疾病的发生。"分子相互作用的全面分析萨里大学的奥利维尔-塞克斯(OlivierCexus)博士曾就职于A*STAR,他利用蛋白质组和脂质组分析,逐步破解了大脑有机体内复杂的分子相互作用。这为我们深入了解大脑发育过程中的新陈代谢相互关系以及对疾病的潜在影响提供了宝贵的资料。这些共同努力有助于加深我们对小胶质细胞的作用、脑器官内的分子成分及其对人类健康的影响的理解。结论和未来影响研究的主要作者、A*STARSIgN高级首席研究员FlorentGinhoux教授说:"了解小胶质细胞在大脑发育和功能中的复杂作用是一个活跃的研究领域。我们的研究结果不仅促进了我们对人类大脑发育的了解,还有可能影响我们对大脑疾病的认识。这为未来研究神经发育疾病和潜在疗法开辟了新的可能性"。这项研究的合著者、KK妇女儿童医院生殖医学部高级顾问、国家医学研究委员会高级临床科学家杰瑞-陈(JerryChan)教授补充说:"目前缺乏研究小胶质细胞如何与发育中的大脑相互作用的工具。这阻碍了人们对小胶质细胞相关疾病的了解,而这些疾病在自闭症、精神分裂症以及阿尔茨海默病和帕金森病等神经退行性疾病的早期发展过程中发挥着重要作用。利用同源多能干细胞培育出这些新型小胶质细胞相关脑器官组织,使我们有机会研究小胶质细胞和神经元在大脑早期发育过程中的复杂相互作用。因此,这可能使我们能够研究小胶质细胞在疾病环境中的作用,并提出及时开发新疗法的方法"。...PC版:https://www.cnbeta.com.tw/articles/soft/1398213.htm手机版:https://m.cnbeta.com.tw/view/1398213.htm

封面图片

揭开微生物暗物质的秘密:神秘的棒状杆菌世界

揭开微生物暗物质的秘密:神秘的棒状杆菌世界扫描电子显微照片显示,紫色的小棒状杆菌细胞生长在大得多的细胞表面。西雅图华大医学中心约瑟夫-穆格斯(JosephMougous)实验室领导的新研究揭示了它们的生命周期、基因,以及它们不同寻常的生活方式背后的一些分子机制。这些附生细菌是Southlakiaepibionticum。图片来源:YaxiWang、WaiPangChan和ScottBraswell/华盛顿大学研究人员能在实验室培养的少数几种棒状杆菌寄生在另一种更大的宿主微生物的细胞表面。一般来说,棒状杆菌缺乏制造许多生命必需分子所需的基因,如构成蛋白质的氨基酸、形成膜的脂肪酸和DNA中的核苷酸。研究人员由此推测,许多无脊椎动物依靠其他细菌生长。在最近发表于《细胞》(Cell)的一项研究中,研究人员首次揭示了不同寻常的棒状杆菌生活方式背后的分子机制。这一突破得益于对这些细菌进行基因操纵的方法的发现,这一进展为可能的新研究方向开辟了一片天地。西雅图系统生物学研究所的尼廷-S-巴利加(NitinS.Baliga)说:"虽然元基因组学可以告诉我们哪些微生物生活在我们的身体上和身体内,但仅凭DNA序列并不能让我们深入了解它们的有益或有害活动,特别是对于那些以前从未被表征过的生物。"表生细菌研究员拉里-A-加拉格尔(LarryA.Gallagher)在华盛顿大学医学院微生物实验室的显微镜前。图片来源:S.BrookPeterson/华盛顿大学他补充说:"从基因上扰乱棒状杆菌的能力为应用强大的系统分析透镜来快速描述强制性附生生物的独特生物学特性提供了可能性。"这项研究背后的团队由华盛顿大学医学院微生物学系约瑟夫-穆格斯(JosephMougous)实验室和霍华德-休斯医学研究所(HowardHughesMedicalInstitute)领导。它们是许多不为人知的细菌之一,其DNA序列出现在对从环境来源的物种丰富的微生物群落中发现的基因组进行的大规模遗传分析中。这种遗传物质被称为"微生物暗物质",因为人们对其编码的功能知之甚少。《细胞》杂志的论文指出,微生物暗物质可能含有潜在生物技术应用的生化途径信息。它还为支持微生物生态系统的分子活动以及该系统中聚集的各种微生物物种的细胞生物学提供了线索。在这项最新研究中分析的棒状杆菌属于糖杆菌(Saccharibacteria)。它们生活在各种陆地和水域环境中,但以栖息在人类口腔中最为著名。至少从中石器时代开始,它们就是人类口腔微生物群的一部分,并与人类口腔健康有关。在人的口腔中,糖杆菌需要放线菌的陪伴,放线菌是它们的宿主。为了更好地了解酵母菌与宿主的关系机制,研究人员利用基因操作来确定酵母菌生长所必需的所有基因。西雅图华盛顿大学医学院微生物实验室厌氧工作站,附生细菌研究员王雅茜。图片来源:S.BrookPeterson/华盛顿大学微生物学教授穆格斯(Mougous)说:"能够初步了解这些细菌所携带的不寻常基因的功能,我们感到非常兴奋。通过今后对这些基因的重点研究,我们希望能揭开糖细菌如何利用宿主细菌生长的神秘面纱"。研究中发现的可能的宿主相互作用因素包括可能帮助糖杆菌附着在宿主细胞上的细胞表面结构,以及可能用于运输营养物质的专门分泌系统。作者工作的另一项应用是生成了表达荧光蛋白的酵母菌细胞。利用这些细胞,研究人员对糖杆菌与宿主细菌一起生长的情况进行了延时显微荧光成像。穆格斯实验室的资深科学家布鲁克-彼得森(S.BrookPeterson)指出:"对糖杆菌-宿主细胞培养物的延时成像揭示了这些不寻常细菌生命周期的惊人复杂性。"研究人员报告说,一些酵母菌作为母细胞,粘附在宿主细胞上,反复出芽,产生小的后代。这些小家伙继续寻找新的宿主细胞。一些后代反过来成为了母细胞,而另一些则似乎与宿主进行着无益的互动。研究人员认为,更多的遗传操作研究将为更广泛地了解他们所描述的"这些生物体所蕴含的丰富的微生物暗物质储备"的作用打开一扇大门,并有可能发现尚未想象到的生物机制。...PC版:https://www.cnbeta.com.tw/articles/soft/1382839.htm手机版:https://m.cnbeta.com.tw/view/1382839.htm

封面图片

科学家用3D打印机“生物打印 ”植物细胞 以研究细胞功能

科学家用3D打印机“生物打印”植物细胞以研究细胞功能一项新研究揭示了一种可重复的方法,通过3D打印机“生物打印”这些细胞来研究不同类型的植物细胞之间的细胞通讯。学习更多关于植物细胞如何相互“沟通”--以及与环境“沟通”--是了解更多关于植物细胞功能的关键。这最终可能导致产生最佳的生长环境和更好的作物品种。PC版:https://www.cnbeta.com/articles/soft/1327333.htm手机版:https://m.cnbeta.com/view/1327333.htm

封面图片

科学家意外发现缺乏"自我"的免疫细胞的全新杀手

科学家意外发现缺乏"自我"的免疫细胞的全新杀手研究人员发现了一种免疫系统用来消灭没有标记为"自身"的CD47分子的细胞的新方法,树突状细胞可以直接杀死这些缺乏CD47的T细胞。这一发现为潜在的癌症治疗提供了一个全新的视角。免疫系统由多种类型的细胞组成,它们共同抵御疾病。树突状细胞和T细胞是其中两种重要类型。树突状细胞分布在人体的各个重要位置,包括肠道、皮肤和淋巴结,它们对周围环境进行采样,并将从这些采样中提取的小分子成分呈现在其表面。T细胞会检查这些样本,如果识别出它们是外来的(或"非自身"),就会启动免疫反应,否则就会继续前进。因此,区分自体和非自体的能力是免疫系统的一个关键特征,T细胞在树突状细胞的帮助下接受了非常有选择性的训练,以确保它们能够做出这种区分。我们体内的细胞表面都有几种分子,能让免疫细胞识别它们是"自我"。其中一种自我识别分子是CD47。众所周知,如果T细胞缺乏CD47,就会被其他免疫细胞有效地消灭。然而,用缺乏CD47的小鼠进行的各种实验都未能揭示哪些细胞负责消灭T细胞的分子机制。众所周知,T细胞在缺乏一种名为CD47的表面分子时会被杀死。现在,神户大学的一个研究小组找到了罪魁祸首,并发现了免疫系统的一种意想不到的能力,这种能力具有治疗癌症的潜力。资料来源:NittaRyo教授(神户大学医学系研究生院结构医学与解剖学研究科)神户大学副教授斋藤康之、博士后研究员小森里美(KomoriSatomi)和特聘教授松崎隆(MatozakiTakashi)的研究小组一直在研究树突状细胞和T细胞之间的分子相互作用,特别是CD47在这一过程中的作用。斋藤解释说:"我们培育了基因改造小鼠,其中只有T细胞缺乏CD47。这与在所有细胞上系统性地缺乏CD47的小鼠的传统方法截然不同。这种新方法使他们能够将CD47在T细胞上的作用与可能影响相互作用的其他因素隔离开来。"他们的研究结果发表在《美国国家科学院院刊》(PNAS)上,明确指出树突状细胞是杀死缺乏CD47的T细胞的细胞。这不仅首次揭示了CD47缺陷T细胞消失背后的机制,还揭示了树突状细胞完全意想不到的能力。斋藤说:"这一结果是完全新颖的,因为人们认为CD47缺陷细胞会被一种叫做'巨噬细胞'的免疫细胞吞噬,而且树突状细胞从来不会诱导其他免疫细胞的细胞死亡。因此,研究小组发现了一种人体识别缺失自我细胞的全新方法,即缺乏CD47的细胞直接被树突状细胞杀死。"这一发现还提出了一个新的研究方向。既然树突状细胞的这种新能力已经被发现,那么它是否也用于其他种类的细胞,是否可以用于治疗呢?斋藤说:"我们的研究结果提出了一个问题:树突状细胞会诱导缺乏CD47的其他细胞死亡吗?这个问题之所以如此重要,是因为这种新型机制可以应用于通过修饰靶细胞(如癌细胞)上的CD47来诱导细胞死亡。"该研究小组已经启动了进一步的研究项目,以澄清这些问题,并更好地理解树突状细胞这种新发现的能力背后的机制。他们还开始着手验证基于这项新发现治疗癌症的潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1376573.htm手机版:https://m.cnbeta.com.tw/view/1376573.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人