重新发明“炼金术” 只靠微生物就能发财了?

重新发明“炼金术”只靠微生物就能发财了?酸奶就是微生物发酵的功劳但其实在现代工业中,微生物能做的远不只满足人类的口腹之欲——在现代科技的帮助下,我们可以用微生物编织出我们身上的衣服(微生物纤维素)、熔铸出我们常用的工具(微生物塑料)、榨取出充当能源的各种油脂(微生物燃料),甚至可以帮助我们从不起眼的矿石中提黄金。微生物和黄金在常人的认知中,似乎是风马牛不相及的,那细菌是如何“炼金”的呢?炼金的本质是什么?要解答这个问题,我们需要先搞明白“炼金”的本质是什么。和铁、铜、铝等主要以化合物形式储藏在矿石中的金属不同,由于金的化学性质很不活泼,其不容易与环境中常见的氧气、二氧化碳、水乃至弱酸/弱碱反应,因此我们在岩矿中勘探到的黄金几乎都是纯净的金元素。但这些金散落于整个金矿层的其他岩石成分中,很少能够像挖化石一样直接开采出比较大的金块。因此,炼金实际上就是通过一些方法把这些分散的金从矿石中“抓”出来,再使其重新“结晶”成金块或金粒的过程。在实际操作中,往往需要大量金矿石才能提取出少量黄金,唐代诗人白居易的诗句“披砂复凿石,矻矻无冬春”描述的就是当时开采金银的不易。采出的金矿石,需要将其磨成细粉后在水中淘洗,利用金密度大,不容易随水流失的特点达到筛选富集黄金的目的。近现代炼金工业中会加入一些化学试剂来协助开采过程,化学试剂中就包括剧毒的氰化钠,因此传统的炼金工业是污染比较大的工业门类。微生物也能成为“炼金术师”黄金的开采和冶炼流程极为复杂,因此能直接发掘得到的自然金——狗头金,尤为珍贵,地质学家认为,这些狗头金应当是金矿石中的黄金微粒被溶解为金离子后二次结晶形成的,但具体的机制很长一段时间以来都没有被破解。自然金在极少数情况下会以狗头金形式出现图片来源:Wikipedia2006年,《科学》杂志上刊登了澳大利亚阿德莱德大学教授弗兰克·里斯(FrankReith)领导的一项研究,该研究通过分子生物学技术在澳大利亚自然金表面检测到了生物成分,并在其中鉴定出30种细菌的DNA,其中一种被称为金属罗尔斯通菌(Ralstoniametallidurans)的细菌在所有DNA阳性金粒上均有发现,且在自然金周围的土壤中并不存在。紧接着,研究人员在这种细菌的培养物中加入含有金离子的溶液,随后观察到了明显的金沉淀现象,由此证明这些细菌参与了自然金的形成。在之后的许多年里,来自世界其他地区的研究也支持了这一观点,并且在当地的自然金中发现了更多种类的“炼金微生物”。为什么微生物可以?令科学家们费解的是,金不是营养物质,不能为细菌提供能源,不参与细菌正常的生命活动,甚至对细菌来说,金离子还是有毒的,那“炼金微生物”们为什么会聚集到自然金表面生活,还要参与沉积黄金呢?事实上,自然界的各种生物与其说是生活在“最适合”的环境中,不如说是生活在“最有优势”的环境中,“炼金微生物”们之所以选择在金块上生活,并参与“建设”金块,就是因为只有它们能够耐受金的毒性,而其他微生物不会来和它们争夺生存空间和周围的营养物质。2018年,哈雷-维滕贝格马丁路德大学的微生物学家迪特里希·H·尼斯(DietrichH.Nies)在《金属组学》杂志上发表的文章揭示了“炼金微生物”的代表——耐金属贪铜菌(Cupriavidusmetallidurans)通过一种被称为“CopA”的酶将细胞外的金离子转化为难吸收的金颗粒,从而抵御金离子对自身细胞的侵害,在这个过程中产生了“炼金”的效果。单独把“CopA”分离出来投放到金溶液中时,金粒子也会产生。这项研究厘清了微生物参与天然金块形成过程的机制,受到了生物化学领域和金属冶金领域的特别关注。黄金表面的耐金属贪铜菌图片来源:Wikipedia结语“炼金微生物”们或许本来并不希望变得那么“金光闪闪”,但为了生存,它们选择定居在富含黄金的环境下,努力进化出了对抗黄金侵害的“盾牌”,这也使得在“微生物炼金”的秘密被揭开时,它们与对它们来说应当是“废物”的黄金一样受到瞩目。从另一个方面讲,“微生物炼金”的发现宣示着天然金块的冶炼似乎本就是微生物的作用,如果我们能将“微生物炼金”开发为一项能够大规模应用的实用技术,一定有助于解决当前炼金工业存在的问题,推动人类社会更加绿色可持续发展。参考资料[1]ReithF,RogersSL,McPhailDC,etal.Biomineralizationofgold:biofilmsonbacterioformgold[J].science,2006,313(5784):233-236.[2]BütofL,WiesemannN,HerzbergM,etal.Synergisticgold–copperdetoxificationatthecoreofgoldbiomineralisationinCupriavidusmetallidurans[J].Metallomics,2018,10(2):278-286.策划制作出品丨科普中国作者丨王锦鸿中国科学院微生物研究所监制丨中国科普博览责编丨林林、金禹奋(实习生)...PC版:https://www.cnbeta.com.tw/articles/soft/1382521.htm手机版:https://m.cnbeta.com.tw/view/1382521.htm

相关推荐

封面图片

复杂的微生物大都会:微生物学家揭示细菌的跨代团队合作

复杂的微生物大都会:微生物学家揭示细菌的跨代团队合作当细菌建立群落时,它们会进行跨代合作并共享养分。巴塞尔大学的研究人员利用一种新开发的方法首次成功地证明了这一点。这项创新技术能够跟踪细菌群落在不同时间和空间发展过程中的基因表达。在自然界中,细菌通常生活在群落中。它们集体定植于我们的肠道,也被称为肠道微生物群,或形成生物膜,如牙菌斑。群落生活给单个细菌带来了许多好处,例如增强了对恶劣环境条件的适应能力、向新领地扩张以及从共享资源中获得共同优势。细菌群落的发展是一个非常复杂的过程,在这个过程中,细菌会形成错综复杂的三维结构。在11月16日发表在《自然-微生物学》(NatureMicrobiology)杂志上的最新研究中,巴塞尔大学生物中心的克努特-德雷舍尔(KnutDrescher)教授领导的研究小组详细研究了细菌群落的发展过程。他们在方法上取得了突破性进展,能够同时测量基因表达,并对微生物群落中单个细胞在空间和时间上的行为进行成像。琼脂板上的枯草杆菌群(彩色图像)图片来源:巴塞尔大学生物中心"我们使用枯草杆菌作为模式生物。这种无处不在的细菌也存在于我们的肠道菌群中。"研究负责人克努特-德雷舍尔(KnutDrescher)教授解释说:"我们发现,这些生活在群落中的细菌会进行跨代合作和互动。前几代人为后几代人沉积代谢物"。他们还在细菌群中发现了不同的亚群,它们产生和消耗不同的代谢物。一个亚群分泌的一些代谢物会成为后来出现的其他亚群的食物。研究人员将最先进的自适应显微镜、基因表达分析、代谢物分析和机器人采样结合在一起。利用这种创新方法,研究人员能够在精确定位的地点和特定时间同时检测基因表达和细菌行为,并识别细菌分泌的代谢物。因此,细菌群可分为三个主要区域:菌群前沿、中间区域和菌群中心。不过,这三个区域呈现出渐变的特点。"根据区域的不同,细菌的外观、特征和行为也各不相同。边缘的细菌大多是运动的,而中心的细菌则形成非运动的长线,从而形成三维生物膜。"第一作者汉娜-杰克尔(HannahJeckel)解释说:"原因之一是空间和资源的可用性不同。"具有独特行为的细菌的空间分布使群落能够扩展,同时也能隐藏在保护性生物膜中。这一过程似乎是细菌群落的普遍策略,对它们的生存至关重要。"这项研究说明了细菌群落的复杂性和动态性,揭示了单个细菌之间有利于群落的合作互动。因此,空间和时间效应在微生物群落的发展和建立中起着核心作用。这项工作的一个里程碑是开发了一种开创性的技术,使研究人员能够以前所未有的分辨率获取多细胞过程的全面时空数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1401329.htm手机版:https://m.cnbeta.com.tw/view/1401329.htm

封面图片

有关肠道微生物组的新发现可能带来新的戒毒疗法

有关肠道微生物组的新发现可能带来新的戒毒疗法维克森林大学医学院的研究人员利用肠道微生物组调节大脑功能的能力及其在抑郁症、焦虑症和自闭症等神经精神疾病中作用的现有科学知识作为研究基础。他们另辟蹊径,研究微生物组是否以及如何影响可卡因的使用和戒断渴望。该研究的通讯作者德鲁-基拉利(DrewKiraly)说:"对于有可卡因使用障碍病史的患者来说,复吸的风险很大,目前还没有有效的药物治疗方法来降低这种风险。因此,我们的研究考察了肠道微生物组如何随着时间的推移影响药物寻求。"首先,研究人员给大鼠注射抗生素,以消耗动物微生物群中的"好"细菌。然后训练大鼠自我服用可卡因。接下来,研究人员考察了有益肠道细菌的减少是否会影响老鼠戒毒后的可卡因觅药行为。最后,研究人员给大鼠注射了短链脂肪酸(SFCAs),以逆转抗生素治疗的效果,看看它对大鼠觅可卡因的行为有什么影响。短链脂肪酸由有益的肠道细菌产生,对大脑健康非常重要。研究人员发现,与对照组相比,微生物群耗竭的大鼠吸食更多的可卡因,并且在戒断一段时间后更努力地寻找毒品,他们说,这表明肠道微生物群影响了可卡因的奖励效应。除了行为上的变化,研究人员还发现,微生物群耗竭显著改变了大脑奖赏和快感系统的一部分--伏隔核的神经生物学标记。重要的是,他们发现微生物群耗竭造成的行为和生物影响可以通过施用SCFA逆转。研究人员说,他们的发现为今后研究特定微生物组成如何驱动药物寻求和其他动机相关行为奠定了基础:"综合来看,这些发现证明了微生物组及其代谢物在药物摄取和寻求中的作用,为今后在这一领域开展转化工作奠定了基础。最终,这些微生物信号通路有可能作为生物标志物或药物使用障碍患者的治疗方法进行探索。"这项研究发表在《神经精神药理学》(Neuropsychopharmacology)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1375001.htm手机版:https://m.cnbeta.com.tw/view/1375001.htm

封面图片

表层土壤中的微生物可能表明地下存在钻石

表层土壤中的微生物可能表明地下存在钻石一块金伯利岩矿石中的钻石原石考虑到这一事实,加拿大不列颠哥伦比亚大学的科学家开始将一种被称为金伯利岩的岩石样本添加到各种土壤微生物种群中。金伯利岩矿石是世界上最常见的钻石基质。在了解哪些微生物物种繁盛、哪些微生物物种消亡后,研究人员留下了金伯利岩的“生物土壤指纹”。研究小组随后分析了从加拿大西北地区的一个勘探地点获得的土壤样本,该地点已经通过钻探证实了金伯利岩的存在。根据土壤中的微生物DNA,发现样本中存在指纹的65个指示物种中的59个。一些以前未识别的物种也大量存在,因此添加它们以创建新的和改进的指纹。然后将该指纹与从怀疑存在金伯利岩的第二个地点获得的微生物指纹进行比较。通过进行此类比较,科学家们成功地找到了位于地表以下约150米(492英尺)处的金伯利岩矿床。事实上,该技术被证明比常用的地球化学分析(测试土壤中的化学元素)的现有方法更可靠。重要的是,人们相信,一旦该技术进一步发展,它可以用来寻找其他类型的矿石。事实证明,它已经成功地定位了广泛用于电池的斑岩铜矿。“这是令人兴奋的,因为这是人们越来越认识到在采矿的每个阶段使用微生物的潜力的一部分,从寻找矿物到加工它们,再到将矿场恢复到自然状态,”团队成员肖恩·克罗博士说。“目前,微生物DNA测序需要特定的专业知识,并且成本与其他矿物勘探技术相当,但这可能会随着行业采用而改变。”有关这项研究的论文最近发表在《自然·通讯·地球与环境》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1392061.htm手机版:https://m.cnbeta.com.tw/view/1392061.htm

封面图片

细菌战甲:青蛙疫苗如何改变微生物组以对抗致命真菌

细菌战甲:青蛙疫苗如何改变微生物组以对抗致命真菌该研究于6月12日发表在皇家学会哲学会刊B的特刊上,表明微生物组反应可能是疫苗功效中一个重要的、被忽视的部分。“构成动物微生物组的微生物通常可以帮助抵御病原体,例如通过产生有益物质或通过与病原体竞争空间或营养物质,”宾夕法尼亚州立大学生物学副教授兼研究负责人GuiBecker说。“但是当你接种疫苗时,你的微生物组会发生什么变化,比如COVID疫苗、流感疫苗或黄热病疫苗等减毒活疫苗?在这项研究中,我们以青蛙作为模型系统开始探索这个问题。”青蛙和其他两栖动物受到壶菌的威胁,这导致几大洲的一些物种灭绝,数百种其他物种的种群数量严重下降。在易感物种中,这种真菌会导致有时致命的皮肤病。“壶菌是近代历史上野生动物保护最严重的病原体之一,如果不是最严重的话,迫切需要开发控制其传播的工具,”贝克尔说,他也是OneHealth微生物组中心和宾夕法尼亚州立大学传染病动力学中心的成员。“我们发现,在某些情况下,疫苗可以诱导微生物组发生保护性转变,这表明仔细操纵微生物组可以作为更广泛战略的一部分,帮助两栖动物,或许还有其他脊椎动物,应对新出现的病原体。”研究人员应用了一种疫苗,在这种情况下,一种由壶菌产生的代谢产物的非致死剂量用于蝌蚪。五周后,他们观察了微生物组的组成是如何变化的,确定了单个细菌种类及其相对比例。研究人员还在实验室中培养了每种细菌,并测试了特定于细菌的产品是否促进、抑制或对壶菌生长没有影响,将结果添加到该信息的大型数据库中并与之进行比较。“增加接触壶菌产品的浓度和持续时间会显着改变微生物组的组成,从而产生更高比例的细菌产生抗壶菌物质,”大学贝克尔实验室的硕士生SamanthaSiomko说。阿拉巴马州的研究人员和论文的第一作者。“这种保护性转变表明,如果一只动物再次接触到相同的真菌,它的微生物组将能够更好地对抗病原体。”以前在微生物组中诱导保护性变化的尝试依赖于添加一种或多种已知可产生有效抗真菌代谢物(即益生菌)的细菌。然而,根据研究人员的说法,细菌必须与微生物组中的其他物种竞争,并且并不总是能够成功地将自己确立为微生物组的永久成员。贝克尔说:“这些青蛙的皮肤上有数百种细菌,它们是从环境中吸收的,而且成分会定期变化,包括随季节变化。试图操纵微生物社区,例如通过添加细菌益生菌,是具有挑战性的,因为社区的动态是如此复杂和不可预测。我们的结果很有希望,因为我们基本上已经朝着更有效地对抗真菌病原体的方向操纵了整个细菌群落,而无需添加需要竞争资源才能生存的生物。”值得注意的是,微生物组内的物种总数多样性没有受到影响,只有物种的组成和相对比例受到影响。研究人员认为这是积极的,因为青蛙微生物组多样性的下降通常会导致疾病或死亡,而且人们普遍认为,维持多样化的微生物组可以让细菌和微生物物种群落更动态地应对威胁更高的功能冗余。研究人员表示,微生物组组成的这种适应性转变,他们称之为“微生物组记忆”,可能在疫苗功效中发挥重要作用。除了了解这种转变背后的机制外,研究小组还希望在未来研究成年青蛙和其他脊椎动物的微生物组记忆概念。“我们的合作团队实施了一种预防技术,该技术依赖于来自壶菌的代谢产物,”贝克尔说。“基于mRNA或活细胞的疫苗——就像那些通常用于预防细菌或病毒感染的疫苗——可能会对微生物组产生不同的影响,我们很高兴探索这种可能性。”...PC版:https://www.cnbeta.com.tw/articles/soft/1364805.htm手机版:https://m.cnbeta.com.tw/view/1364805.htm

封面图片

新研究向抗病微生物组疗法迈出重要一步

新研究向抗病微生物组疗法迈出重要一步现在,哈德逊医学研究所(HudsonInstituteofMedicalResearch)与美国系统生物学研究所(InstituteforSystemsBiology)和澳大利亚莫纳什大学(MonashUniversity)的科学家合作开展的新研究发现了一种方法,可以确定肠道中哪些物种最重要,以及它们之间的相互作用如何影响微生物组和更广泛生物学的健康,并为治疗炎症性肠病、感染、自身免疫性疾病和癌症等一系列健康问题的新进展铺平了道路。哈德逊研究所副教授塞缪尔-福斯特(SamuelForster)说:"健康的肠道中大约有1000种不同的细菌--这是一个微观的多元文化社区,拥有超过一万亿的个体成员。我们微生物群落中的细菌以群落的形式存在,它们相互依赖,相互产生和分享关键的营养物质"。研究人员表示,通过研究复杂微生物群的计算模型,他们不仅可以了解微生物的构成和相互作用,还可以了解它们如何影响周围的身体。福斯特说:"我们开发了一种新的计算方法来了解这些依赖关系及其在塑造我们的微生物群方面的作用。这种新方法解开了我们对肠道微生物群的理解,为选择性重塑微生物群落的新治疗方案奠定了基础。"克罗恩病就是一个例子,研究小组证实它与微生物群中的硫化氢有关。研究人员发现,与之前的研究相反,该病是由于使用硫化氢的细菌减少而引发的,而不是产生硫化氢的物种增加。福斯特和他的团队与总部位于阿德莱德的生物技术公司BiomeBank有着长期的合作关系,该公司正在研究通过恢复肠道微生物生态来治疗和预防疾病的新方法。通过哈德逊医学研究所与BiomeBank的合作,这些对群落结构的深入了解将为合理选择微生物组合进行有针对性的干预提供机会。使用计算方法研究微生物群落可能是了解如何针对群落中的复杂关系采取意义深远的健康干预措施的关键一步。"这是开发复杂微生物疗法的重要一步,"领衔作者瓦内萨-马塞利诺(VanessaMarcelino)说。"这种方法使我们能够识别和排列细菌之间的关键相互作用,并利用这些知识预测改变群体的有针对性的方法"。该团队目前正与生物技术公司BiomeBank合作,以便将他们的发现付诸实践,找到利用肠道微生物群生态学治疗和预防疾病的新方法。福斯特说:"通过哈德逊医学研究所与BiomeBank的合作,我们对群落结构的这些见解将为合理选择微生物组合进行有针对性的干预提供机会。"该研究发表在《自然通讯》(NatureCommunications)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391753.htm手机版:https://m.cnbeta.com.tw/view/1391753.htm

封面图片

微生物群在室友家人之间共享

微生物群在室友家人之间共享《nature》发表了一项迄今关于人类微生物群传播最大最多样化的研究,世界各地18个机构和研究中心参与。分析了五大洲20个国家9715份参与者的粪便和唾液样本,评估母婴、亲人、双胞胎、伴侣、室友、村庄和人群之间的传播。结果表明,同居个体之间存在大量的菌株共享,此前认为非传染性的疾病可能一定程度上具有传染性,包括但不限于与微生物群相关的癌症、糖尿病、心血管疾病、肥胖。同居个体之间肠道和口腔微生物组的中位数菌株共享率为12%和32%,伴侣之间的肠道和口腔菌株共享分别为13%和38%,口腔微生物群的传播会随着同居持续时间而增强。母婴间菌株共享率50%,母体微生物群的细菌甚至可以在老年人身上检测到。同一村庄不同家庭的个体的菌株共享率明显高于不同村庄的菌株共享率。https://www.nature.com/articles/s41586-022-05620-1#硬核#科普#科学#Nature投稿:@ZaiHuabot频道:@TestFlightCN

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人