永不真正离去的病毒 - 科学家揭开疱疹长期潜伏人体的伎俩

永不真正离去的病毒-科学家揭开疱疹长期潜伏人体的伎俩疱疹病毒病毒横截面(中央)和未切片(右上角)模型。病毒表面的糖蛋白(红色)与膜(透明)融为一体。膜上有各种病毒保护蛋白(灰色)和同化的宿主蛋白(粉红色)。病毒外壳蛋白UL32用黄色标出。病毒中心是DNA(未显示),由核壳(蓝色)包裹。图片来源:YuehengZhou,AbseaBiotechnology疱疹病毒之所以如此成功,是因为它们对人类有着出色的适应能力,并能采取策略躲避我们的免疫系统。它们伪装的关键是蛋白质,这些蛋白质会欺骗受感染的细胞,让它们以为自己没有受到威胁。例如,众所周知,每一种疱疹病毒都有一个强大的蛋白质组,即大量的这些蛋白质,它们高度适应宿主,使病毒能够在感染后立即进行高效复制。复杂的蛋白质组还能确保在已感染的细胞中形成多层颗粒。这些新形成的病毒(也称为病毒粒子)含有大量病毒蛋白和宿主蛋白。颗粒中心是病毒DNA,由核壳包裹。在核壳周围还形成了一层由许多其他蛋白质组成的保护膜。颗粒在病毒再活化过程中发挥作用无论以何种方式重新激活病毒,颗粒都是使病毒在体内再次复制和系统传播的关键。因此,它们是经过长期休眠(潜伏)后疾病爆发的核心因素。然而,人们对这些颗粒的内部组织,尤其是外壳内蛋白质与蛋白质之间的相互作用知之甚少。因此,莱布尼茨分子药理学研究所(FMP)和柏林夏里特大学的研究人员仔细研究了这些颗粒,特别是人类巨细胞病毒(HCMV)。巨细胞病毒在人群中的发病率很高,而且非常危险,尤其是对接受移植手术的人和通过母体感染的胎儿。尽管进行了深入研究,但目前还没有一种耐受性良好的抗病毒疗法可以有效控制甚至消除病毒。目前也没有针对这种病毒的疫苗。新绘制的地图指出哪些蛋白质相互影响在目前的工作中,刘凡(FMP)和LüderWiebusch(Charité)领导的研究小组首次绘制了HCMV颗粒内病毒和宿主细胞蛋白之间空间相互作用的详细地图。研究发现,宿主细胞的某些蛋白质会被病毒蛋白质招募,并在病毒复制过程中发挥作用。例如,一种名为UL32的病毒蛋白会将一种细胞蛋白(蛋白磷酸酶PP1)招募到颗粒中,以避免与其他不需要的宿主细胞蛋白结合。FMP病毒学家鲍里斯-博格丹诺(BorisBogdanow)说:"HCMV本身没有像PP1这样的磷酸酶,所以你可以看到病毒利用了宿主细胞的某些蛋白质来高效复制。"为了逐层研究完整的HCMV颗粒中不同蛋白质之间的相互作用,研究人员使用了一种叫做交联质谱的技术。FMP的质谱分析专家刘凡强调说:"这种方法还能让我们得出蛋白质身份的结论。"但交联法的特别之处和独特之处在于,我们可以看到哪些蛋白质相互之间发生了作用,以及在哪里发生作用"。这种创新技术从未被用于绘制疱疹病毒颗粒内相互作用的空间组织图。有了这些数据,MohsenSadeghi随后在柏林联邦大学创建了HCMV粒子的计算机模型。该虚拟模型可以模拟粒子内的每种蛋白质,并以生动的方式将生物物理过程可视化。鲍里斯-博格丹诺(BorisBogdanow)对这一结果进行了归类:"已确定的蛋白质与蛋白质之间的相互作用对于更好地理解HCMV复杂的生命周期非常重要。反过来,这对于找到针对HCMV的候选抗病毒药物也很重要。"...PC版:https://www.cnbeta.com.tw/articles/soft/1376455.htm手机版:https://m.cnbeta.com.tw/view/1376455.htm

相关推荐

封面图片

揭开细胞动力源的秘密:科学家们揭开了线粒体的蛋白质图谱

揭开细胞动力源的秘密:科学家们揭开了线粒体的蛋白质图谱线粒体是细胞的"动力室",在生物体的能量生产中发挥着关键作用,并参与各种代谢和信号过程。来自波恩大学医院和弗莱堡大学的研究人员现在已经对线粒体内的蛋白质组织有了系统的了解。线粒体的蛋白质图谱为进一步探索这些细胞动力源的功能奠定了重要基础,并对疾病的理解产生了影响。这项新研究最近发表在著名的《自然》杂志上。线粒体是细胞的重要组成部分,被一层双膜所包围,将它们与细胞的其他部分分开。它们产生维持这些活动所需的大部分能量。除了能量生产,线粒体在新陈代谢和信号传递中发挥着关键作用,作为炎症过程和程序性细胞死亡的表面。从线粒体进入门移除被捕蛋白质的质量控制机制的模型。资料来源:Schulte等人,2023年《自然》杂志线粒体的缺陷导致了许多疾病,尤其是神经系统的疾病。因此,对线粒体过程的分子理解对基础医学研究具有最重要的意义。细胞中的分子工作者通常是蛋白质。线粒体可以包含大约1000个或更多不同的蛋白质。为了执行功能,这些分子中的几个经常一起工作,形成一个蛋白质机器,也称为蛋白质复合物。蛋白质还在分子过程的执行和调节中相互作用。然而,人们对线粒体蛋白质在这种复合体中的组织结构知之甚少。英国广播公司的托马斯-贝克尔教授和法比安-登-布拉夫博士的研究小组与弗莱堡大学的贝恩德-法克勒教授、乌韦-舒尔特博士和尼古拉斯-普凡纳教授的研究小组一起,创建了一个蛋白质复合物中蛋白质组织的高分辨率图像,称为MitCOM。这涉及一种被称为复合体分析的特殊方法,以前所未有的分辨率记录单个蛋白质的指纹。MitCOM揭示了来自面包酵母的90%以上的线粒体蛋白在蛋白质复合物中的组织。这使得新的蛋白质-蛋白质相互作用和蛋白质复合体的鉴定成为可能--这对进一步的研究非常重要。UKB的研究人员与合作研究中心1218"线粒体对细胞功能的调节"项目合作,展示了这一数据集如何被用来阐明新的过程。线粒体从细胞的液体部分(称为细胞膜)输入99%的蛋白质。在这个过程中,一种被称为TOM复合体的机制使这些蛋白质通过膜被吸收到线粒体中。然而,当蛋白质在运输过程中被卡住时,它们是如何从TOM复合体中移除的,这一点在很大程度上还不清楚。为了阐明这一点,Becker教授和denBrave博士领导的团队使用了MitCOM数据集的信息。结果表明,非输入的蛋白质被专门标记为细胞降解。博士生ArushiGupta的研究进一步揭示了这些被标记的蛋白质随后被定向降解的途径。了解这些过程很重要,因为蛋白质输入的缺陷可能导致细胞损伤和神经系统疾病。"我们研究中的例子证明了MitCOM数据集在阐明新机制和途径方面的巨大潜力。因此,这个蛋白质地图代表了进一步研究的重要信息来源,它将帮助我们了解细胞动力源的功能和起源,"UKB生物化学和分子生物学研究所所长贝克尔教授说。...PC版:https://www.cnbeta.com.tw/articles/soft/1348957.htm手机版:https://m.cnbeta.com.tw/view/1348957.htm

封面图片

科学家发现 COVID-19 的关键弱点

科学家发现COVID-19的关键弱点加州大学河滨分校研究小组在《病毒》杂志上发表的一篇新论文中描述了一项重要发现。COVID中负责病毒复制的N蛋白需要人体细胞的帮助才能完成工作。细胞中的遗传指令从DNA转录到信使RNA,然后翻译成蛋白质,从而实现生长和与其他细胞交流等功能。翻译之后,蛋白质往往需要酶的额外修饰。这些所谓的翻译后修饰可确保蛋白质以独特的方式完成其预期任务。COVID利用了一种称为SUMOylation的人类翻译后过程,它能将病毒的N蛋白引导到正确的位置,以便在感染人类细胞后包装其基因组。一旦到达正确的位置,该蛋白就能开始将其基因拷贝到新的传染性病毒颗粒中,侵入我们更多的细胞,让我们病得更重。这项新研究的合著者、加州大学旧金山分校综合基因组生物学研究所蛋白质组学核心实验室经理张泉清说:"如果位置不对,病毒就无法感染我们。"引发COVID-19的单个病毒。图片来源:MayaPetersKostman/创新基因组研究所蛋白质组学是研究生物体制造的所有蛋白质、它们如何被其他酶修饰以及它们在生物体中发挥的作用。"如果某人受到感染,他或她的某种蛋白质可能会出现与之前不同的表现。张说:"这正是我们的设备所要寻找的。"在这种情况下,研究小组设计并进行了实验,使COVID蛋白质的翻译后修饰变得一目了然。UCR生物工程教授、论文通讯作者廖嘉宇说:"我们利用荧光向我们展示了病毒与人类蛋白质相互作用并制造新病毒--传染性病毒粒子的位置。这种方法比其他技术更灵敏,能让我们更全面地了解人类蛋白质和病毒蛋白质之间的所有相互作用。"生物工程团队此前利用类似方法发现,两种最常见的流感病毒--甲型流感和乙型流感需要相同的翻译后SUMOylation修饰才能复制。这篇论文表明,COVID依赖于SUMOylation蛋白,就像流感一样。阻止人类蛋白质的进入将使我们的免疫系统能够杀死病毒。目前,治疗COVID最有效的方法是Paxlovid,它可以抑制病毒复制。不过,患者需要在感染后三天内服用。如果过了三天再服用,效果就没那么好了。基于这一发现的新药将对处于各个感染阶段的患者都有用。病毒之间的相似性可能会带来全新的抗病毒药物。如果有足够的支持,Liao估计这些药物可以在五年内开发出来。"我认为其他病毒也可能以这种方式起作用,"廖说。"最终,我们希望既能阻断流感,也能阻断COVID-19,还有可能阻断其他病毒,如RSV和埃博拉病毒。我们正在进行新的发现,以帮助实现这一目标。"...PC版:https://www.cnbeta.com.tw/articles/soft/1384079.htm手机版:https://m.cnbeta.com.tw/view/1384079.htm

封面图片

科学家发现抑制唇疱疹病毒传播的分子

科学家发现抑制唇疱疹病毒传播的分子许多成年人都感染过1型单纯疱疹病毒(HSV-1),这是一种终身性疾病,通常表现为恼人的唇疱疹,但也有可能导致更严重的脑部或眼部感染,尽管这种情况很少见。以前的研究已提出证据,证明肝聚糖酶(HPSE)与HSV-1、其他病毒和癌症的传播有关。硫酸肝素存在于每个组织的细胞外基质(ECM)和几乎每个细胞的表面,负责调节细胞与细胞之间的相互作用并维持ECM的健康。已知唯一能分解或裂解硫酸肝素的酶是HPSE。正常情况下,它以受控方式进行分解,释放出身体其他部位生物过程所需的分子。但是,硫酸肝素也在许多病毒(包括HSV-1)的细胞进入和释放过程中发挥作用,HPSE的过度表达和不受控制的硫酸肝素裂解会导致细胞异常活化和严重的组织损伤。由于HPSE在协助病毒和癌症传播方面的作用,研究人员一直致力于开发一种抑制HPSE的方法。现在,伊利诺伊大学芝加哥分校领导的研究人员发现了一种抑制HSV-1传播的分子,使我们离有效治疗病毒和癌症更近了一步。该研究的通讯作者迪帕克-舒克拉(DeepakShukla)说:"我们展示了这种抑制剂对疱疹病毒的作用,但它有可能用于各种疾病。"在之前的一项研究中,研究人员确定了HSV-1如何调节硫酸肝素的合成以优化感染和病毒传播。在目前的研究中,他们设计并合成了不同的糖类,并评估了它们抑制HPSE活性的能力。糖类是碳水化合物的组成单位,根据组成它们的单体数量进行分类。例如,两个单糖(单糖)结合在一起就形成了双糖,而寡糖则包含2到10个单糖。由于HSV-1可引起眼部疱疹或疱疹性角膜炎(一种眼部角膜感染),研究人员对感染了病毒的人类角膜上皮细胞进行了各种糖的测试。在感染HSV-1之前或同时给予这些化合物,他们发现,使用六糖和八糖处理后,样本中的细胞外病毒数量大幅减少,病毒传播也受到抑制。在检查用这些糖处理过的细胞时,研究人员观察到表面硫酸肝素的水平大幅提高,与未感染HSV-1的细胞相似。研究人员还发现,细胞的迁移能力明显增强,这表明伤口愈合能力有所提高,研究人员认为这是六糖和八糖的抗病毒活性所致。根据研究结果,研究人员得出结论,这些糖化合物具有双重作用模式,既能阻止病毒进入细胞,又能阻止病毒释放。由于HPSE在促进细胞存活的活动中发挥作用,以往开发HPSE抑制剂的尝试都遇到了毒性问题。在这里,研究人员没有发现有效化合物对角膜细胞有毒性的证据。此外,HPSE抑制剂通常是一种肝素类药物,用于防止血液凝固,因此可能导致出血。由于研究人员使用的六糖和八糖不含有对激活肝素抗凝活性至关重要的双糖单位,因此出血不是问题。研究人员说:"抑制角膜细胞中的HPSE对伤口愈合和调节眼部炎症非常重要。总之,这些观察结果表明,HPSE抑制剂可以防止病毒释放并随后扩散到其他细胞和组织"。研究人员说,在他们的HPSE抑制剂准备用于临床之前,还有很多工作要做。尽管如此,这是开发治疗HSV-1、其他病毒和癌症的新型疗法的重要一步。这项研究发表在《AngewandteChemie》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1383325.htm手机版:https://m.cnbeta.com.tw/view/1383325.htm

封面图片

科学家揭开关键癌症蛋白质的秘密结构

科学家揭开关键癌症蛋白质的秘密结构俄亥俄州立大学的科学家们利用先进的研究技术检测了一种因危险突变而与人类癌症关系密切的蛋白质的隐藏区域,从而为该蛋白质的研究注入了新的活力。这项研究确定了受有害基因改变影响的区域。Ras蛋白家族是启动多种细胞生长、分裂和分化的酶,其基因已被确定为人类最常发生突变的癌症相关基因。这项研究的对象K-Ras蛋白与75%的Ras相关癌症有关。研究人员首次发现了这种蛋白质结构的一部分,而这部分结构以前是标准实验室工具无法观察到的,研究人员揭示了与这种蛋白质突变有关的特征和相互作用,这种突变使细胞处于永久分裂状态--这是一种典型的癌症特征。研究的资深作者、俄亥俄研究学者、俄亥俄州立大学化学与生物化学教授拉斐尔-布吕施韦勒(RafaelBrüschweiler)说:"我们知道这些突变是一个重大问题:它们会导致死亡。我们知道,结构生物学能为了解这些突变的机制提供独特的见解,并能促进寻找潜在的治疗方法。""我们现在对这种蛋白质的作用有了更全面的了解,这意味着我们可以开始考虑如何在它变异后中和它。从这个意义上说,信息就是力量,现在这些信息已经公开,我们和其他研究人员可以利用这些信息开始假设。"这项研究最近发表在《自然-结构与分子生物学》(NatureStructural&MolecularBiology)杂志上。研究方法和结果尽管已有关于K-Ras及其与细胞健康相关分子的关键功能关系的知识,但这种蛋白质一直被认为是"不可药用的",因为它的构型-无论是正常形式还是突变形式都隐藏了其结构中最有希望成为治疗靶点的位点。设计这类药物时需要精确,因为以错误的方式干扰蛋白质可能比突变导致的疾病造成更大的伤害。"K-Ras是癌症研究的圣杯--可能是全世界研究最多的生物分子之一,因为它在许多癌症中发挥着关键作用,"Brüschweiler说。"但这也是一个巨大的挑战。"2019年,Brüschweiler及其同事报告了一种技术,这种技术能够观察到移动速度太慢、标准核磁共振(NMR)光谱无法检测到的蛋白质。一年后,研究小组决定开始将这些发现应用于寻找K-Ras的秘密藏身之处。标准核磁共振可以跟踪快速作用的蛋白质,但在较长的运动和相互作用时间尺度上会遇到困难,而用于确定蛋白质结构的X射线晶体学在运动较少和时间较长的情况下效果更好。Brüschweiler及其同事考虑到了K-Ras的动态特性及其与活性配体(GTP)的相互作用,首先检测到了来自隐藏区域的微弱信号,然后优化核磁共振实验以加强这些信号。这项研究揭示了K-Ras结构中的两个"开关"区域--有趣的是,这两个区域都位于发生最危险突变的蛋白质环附近,这在以前是不可见的。研究小组还确定了蛋白质"骨架"的复杂结构动力学行为,它放大了开关附近的其他特征。Brüschweiler说,骨架对了解蛋白质的结构特性至关重要--从骨架出发,鉴定氨基酸侧链"相对简单"。这些实验还进一步明确了正常蛋白质与其变异形式的区别:在正常情况下,K-Ras与两个伙伴分子中的第一个分子结合时活性更高,并能保持对多种细胞功能的适当控制,包括恢复到非活性状态。如果发生突变,K-Ras就会停留在活跃期,永远不会休息。"我们需要活跃的细胞,但在某些时候,它们必须停下来。否则,就像在汽车上永远不要把脚从油门上移开--在某些时候,你需要把脚从油门上移开,因为车速太快了,"他说。"这就是基本问题所在,这些突变会诱导细胞不停地活动。"有了突变相关开关区域的特征,研究人员就有了新的药物靶点,可以在不妨碍K-Ras基本细胞功能的情况下抑制突变。Brüschweiler说:"开关和开关相互作用的相关区域是新的候选目标,我们现在可以对它们进行前所未有的详细监测。这可能不会在一夜之间改变世界,但这是有可能影响人类健康的基本新知识。"Brüschweiler对下一步工作有自己的想法,比如描述现有药物如何与蛋白质相互作用。他的团队和其他人未来的工作将得到一台磁场为1.2千兆赫的新型NMR仪器的支持,这将是美国最强大的NMR仪器,该仪器刚刚运抵俄亥俄州立大学,Brüschweiler是俄亥俄州立大学国家网关超高场NMR中心的首席研究员。该中心于2019年获得了美国国家科学基金会1760万美元的资助,该基金会也为这项新研究提供了支持。...PC版:https://www.cnbeta.com.tw/articles/soft/1395097.htm手机版:https://m.cnbeta.com.tw/view/1395097.htm

封面图片

科学家用尖端人工智能揭开蛋白质的秘密

科学家用尖端人工智能揭开蛋白质的秘密该工具由KAUST生物信息学研究员MaxatKulmanov及其同事开发,在预测蛋白质功能方面优于现有的分析方法,甚至能够分析现有数据集中没有明确匹配的蛋白质。该模型被称为DeepGO-SE,它利用了类似于Chat-GPT等生成式人工智能工具所使用的大型语言模型。然后,它根据蛋白质工作方式的一般生物学原理,利用逻辑蕴含得出关于分子功能的有意义的结论。从本质上讲,它通过构建部分世界模型(在本例中为蛋白质功能),并根据常识和推理推断出在这些世界模型中应该发生的事情,从而赋予计算机逻辑处理结果的能力。一种新的人工智能(AI)工具能对未知蛋白质的功能进行逻辑推理,有望帮助科学家揭开细胞内部的奥秘。图片来源:©2024KAUST;IvanGromicho他补充说:"这种方法有很多应用前景,"KAUST生物本体论研究小组负责人罗伯特-霍恩多夫(RobertHoehndorf)说,"特别是当需要对神经网络或其他机器学习模型生成的数据和假设进行推理时。"库尔曼诺夫和霍恩多夫与KAUST的斯特凡-阿罗德(StefanArold)以及瑞士生物信息学研究所的研究人员合作,评估了该模型破译那些在体内作用未知的蛋白质功能的能力。该工具成功地利用了一种鲜为人知的蛋白质的氨基酸序列数据及其与其他蛋白质的已知相互作用,并精确地预测了其分子功能。该模型非常精确,在一次国际功能预测工具竞赛中,DeepGO-SE在1600多种算法中名列前20位。KAUST团队目前正在利用这一工具研究在沙特阿拉伯沙漠极端环境中生长的植物中发现的神秘蛋白质的功能。他们希望这些发现将有助于确定生物技术应用中的新型蛋白质,并希望其他研究人员也能使用这一工具。库尔曼诺夫解释说:"DeepGO-SE分析未表征蛋白质的能力可以促进药物发现、代谢通路分析、疾病关联、蛋白质工程、筛选感兴趣的特定蛋白质等任务。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418103.htm手机版:https://m.cnbeta.com.tw/view/1418103.htm

封面图片

科学家揭示蛋白质如何驱动癌症生长

科学家揭示蛋白质如何驱动癌症生长在圣路易斯华盛顿大学医学院、麻省理工学院和哈佛大学布罗德研究所、杨百翰大学以及世界各地其他机构的领导下,临床蛋白质组肿瘤分析联合会对驱动癌症的关键蛋白质及其调控方式进行了研究。研究结果于8月14日发表在《细胞》(Cell)和《癌细胞》(CancerCell)杂志上的一组论文中。临床肿瘤蛋白质组学分析联合会由美国国立卫生研究院(NIH)国家癌症研究所资助。资深作者、华盛顿大学戴维-英格利希-史密斯医学特聘教授丁力博士说:"在我们开发更好的癌症疗法的努力中,这种对驱动肿瘤生长的蛋白质的新分析是继癌症基因组测序之后的下一步。通过过去的癌细胞基因组测序工作,我们确定了近300个驱动癌症的基因。现在,我们正在研究这些癌基因所启动的机器的细节--实际导致细胞分裂失控的蛋白质及其调控网络。我们希望这项分析能成为癌症研究人员开发多种肿瘤类型新疗法的重要资源。"研究人员分析了涉及10种不同类型癌症的约1万个蛋白质,他们强调了大量数据在这类分析中的重要性;其中许多重要的癌症驱动蛋白在任何一种癌症中都很罕见,如果对肿瘤类型进行单独研究,就不可能发现这些蛋白。这项分析包括两种不同类型的肺癌以及结直肠癌、卵巢癌、肾癌、头颈癌、子宫癌、胰腺癌、乳腺癌和脑癌。丁力也是巴恩斯犹太医院和华盛顿大学医学院西特曼癌症中心的研究成员。他介绍谁哦"当我们对多种癌症类型进行综合分析时,我们就能提高检测导致癌症生长和扩散的重要蛋白质的能力。综合分析还能让我们找出驱动不同类型癌症的主要共同机制。"除了单个蛋白质的功能外,这些数据还能让研究人员了解蛋白质之间是如何相互作用来促进癌症生长的。如果两种蛋白质的水平相互关联--例如,当其中一种蛋白质的水平较高时,另一种蛋白质的水平也总是较高--这就表明这两种蛋白质是作为伙伴作用的。破坏这种相互作用可能是阻止肿瘤生长的一种有效方法。这些研究(包括丁和布罗德研究所的加德-格茨博士共同领导的一项研究)还揭示了通过化学改变蛋白质以改变其功能的不同方法。研究人员记录了这种化学变化--称为乙酰化和磷酸化的过程--如何改变DNA修复、改变免疫反应、改变DNA的折叠和包装方式,以及其他可能在癌症发生过程中发挥作用的重要分子变化。这项研究还揭示了免疫疗法的有效性。检查点抑制剂等免疫疗法通常对突变较多的癌症最有效,但即便如此,它们也并非对所有患者都有效。研究人员发现,大量突变并不总是导致异常蛋白质的大量存在,而异常蛋白质正是免疫系统攻击肿瘤的目标。丁说:"对某些癌症来说,即使突变有可能产生肿瘤抗原,但如果没有异常蛋白表达或表达很少,这种突变就可能不是治疗的靶点。这可以解释为什么有些病人对免疫疗法没有反应,即使他们似乎应该对免疫疗法有反应。因此,我们的蛋白质组学调查涵盖了肿瘤抗原的表达谱,对于设计针对选定突变的新免疫疗法特别有用。"在另一项研究中,丁的团队确定了DNA甲基化模式,这是另一种能影响基因表达方式的化学变化。这种模式可能是癌症的关键驱动因素。在一项重要发现中,研究小组确定了在某些肿瘤类型中抑制免疫系统的分子开关。这组四项研究的最后一篇论文向更广泛的研究界提供了联盟使用的数据和分析资源。她说:"总的来说,这种对多种癌症类型进行的彻底蛋白质组学和化学修饰分析--与我们长期积累的癌症基因组学知识相结合--提供了另一层信息,我们希望这些信息能帮助解答癌症是如何生长并设法躲避我们的许多最佳治疗方法的许多持续存在的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377313.htm手机版:https://m.cnbeta.com.tw/view/1377313.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人