保持专注不是靠意志力 而是一些微小的神经元起作用

保持专注不是靠意志力而是一些微小的神经元起作用宾夕法尼亚大学佩雷尔曼医学院的神经科学家们首次发现了位于大脑前部的"视觉运动"神经元是如何引导我们朝着正确的方向集中精力完成一项必要的任务的,无论短期的干扰有多么诱人。"我们的研究表明,虽然所有的大脑都有能力专注于一项有回报的任务并过滤掉分心的东西,但有些人比其他人更擅长,"资深作者、宾夕法尼亚大学医学院神经外科教授比扬-佩萨兰(BijanPesaran)说。"通过了解我们的大脑是如何处理奖赏刺激的,我们希望也能了解在各种认知和精神疾病(包括注意力缺陷障碍、精神分裂症和强迫症)中大脑处理奖赏刺激失败的原因"。在一个动物模型中,科学家们发现,外侧前额叶皮层(大脑中驱动动机和奖励的区域)中的一组神经元会启动,以保持对主要任务的关注,并屏蔽其他干扰刺激。这种协调的神经元活动,即"自上而下"认知功能中的"β爆发",似乎是人类和大型哺乳动物(包括许多灵长类动物)能够屏蔽"噪音"以完成重要任务的关键机制。第一作者、佩萨兰实验室研究员阿格里塔-杜比(AgritaDubey)说:"这向我们表明,β脉冲串起源于视觉运动神经元网络,并充当处理不同视觉刺激的神经元的'交通指挥'。这也表明,专注于一项有回报的任务需要耗费大量精力,而这可能是可以改善的,尤其是对于注意力有缺陷的人来说。"虽然是初步研究,但这项研究在了解大脑如何帮助我们确定任务优先顺序方面迈出了一大步。它还可以帮助我们了解如何更好地解决神经多样性大脑的注意力问题。这项研究发表在《神经元》(Neuron)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1376383.htm手机版:https://m.cnbeta.com.tw/view/1376383.htm

相关推荐

封面图片

微小独特的海洋生物揭示神经元的古老起源

微小独特的海洋生物揭示神经元的古老起源H2的共聚焦显微镜下细胞核图像(按深度着色),H2是胎生动物的四个物种之一,该研究的作者为其绘制了细胞图谱。图片来源:SebastianR.Najle/基因调控中心胎生动物是一种微小的动物,大约只有一粒大沙粒大小,在温暖的浅海中以生活在岩石表面和其他基质上的藻类和微生物为食。这种形似圆球和薄饼的生物非常简单,没有任何身体部位或器官。这些动物被认为是在大约8亿年前首次出现在地球上,是与栉水母纲(Ctenophora)、多孔纲(Porifera)、腔肠纲(Cnidaria)(珊瑚、海葵和水母)和双鞭毛目(Bilateria)(所有其他动物)并列的五大动物门类之一。这些海洋生物通过肽能细胞协调自己的行为,肽能细胞是一种特殊类型的细胞,能释放小肽来指挥动物的运动或进食。在对这些细胞起源的好奇心驱使下,这项研究的作者们采用了一系列分子技术和计算模型,以了解胎生动物细胞类型是如何进化的,并拼凑出我们远古祖先的外观和功能。重建远古细胞类型研究人员首先绘制了一张所有不同胎生动物细胞类型的地图,标注了它们在四个不同物种中的特征。每种细胞类型都有特定的作用,这些作用来自于特定的基因组。这些地图或"细胞图谱"让研究人员能够绘制出这些基因的集群或"模块"。然后,他们绘制了控制这些基因模块的DNA调控区域图,从而清楚地显示了每个细胞的作用以及它们是如何协同工作的。最后,他们进行了跨物种比较,重建了细胞类型的进化过程。在显微镜下观察毛鳞虫H2标本的延时视频。资料来源:SebastianR.Najle/CentrodeRegulaciónGenómica研究表明,胎生动物的九种主要细胞类型似乎是由许多"中间"细胞类型连接起来的,它们从一种类型转变为另一种类型。这些细胞不断生长和分裂,维持着动物移动和进食所需的细胞类型的微妙平衡。研究人员还发现了14种不同类型的肽能细胞,但这些细胞与所有其他细胞都不同,没有显示出任何中间类型,也没有任何生长或分裂的迹象。令人惊讶的是,肽能细胞与神经元有许多相似之处--这种细胞类型直到数百万年后才出现在更高级的动物体内,如双毛目动物。跨物种分析表明,这些相似之处是胎生动物所独有的,并没有出现在海绵或栉水母等其他早期分支动物身上。进化的垫脚石肽能细胞与神经元之间的相似性体现在三个方面。首先,研究人员发现,这些胎生动物细胞是通过发育信号从原生上皮细胞群中分化出来的,这种信号类似于网虫和双足纲动物的神经发生过程,即新神经元的形成过程。其次,他们发现肽能细胞具有许多基因模块,这些模块是构建神经元中能够发出信息的部分(突触前支架)所必需的。然而,这些细胞远非真正的神经元,因为它们缺乏神经元信息接收端(突触后)的组件或传导电信号所需的组件。最后,作者利用深度学习技术表明,胎生动物细胞类型之间的交流是通过细胞内的一个系统进行的,在这个系统中,被称为GPCR(G-蛋白偶联受体)的特定蛋白质会检测到外部信号,并在细胞内启动一系列反应。这些外部信号由神经肽介导,神经肽是神经元在许多不同生理过程中使用的化学信使。这项研究的共同第一作者、基因组调控中心博士后研究员塞巴斯蒂安-纳伊尔(SebastiánR.Najle)博士说:"我们对这些相似之处感到震惊。胎生动物的肽能细胞与原始神经细胞有许多相似之处,尽管它们还没有达到那种程度。这就像是在看一块进化的垫脚石。"神经元的曙光这项研究表明,8亿年前,在远古地球浅海中吃草的祖先动物中,神经元的构件正在形成。从进化的角度来看,早期的神经元最初可能类似于今天胎生动物的肽能分泌细胞。这些细胞利用神经肽进行交流,但最终获得了新的基因模块,使细胞能够创建突触后支架,形成轴突和树突,并创建产生快速电信号的离子通道--这些创新对于胎生动物祖先首次出现在地球上后约一亿年神经元的出现至关重要。然而,神经系统的完整进化故事仍有待考证。据认为,第一个现代神经元起源于大约6.5亿年前的刺胞动物和两栖动物的共同祖先。然而,栉水母中也存在类似神经元的细胞,尽管它们在结构上有很大差异,而且缺乏现代神经元中大多数基因的表达。胎生动物细胞中存在其中一些神经元基因,而栉孔动物中却没有,这引发了有关神经元进化轨迹的新问题。"胎生动物缺乏神经元,但我们现在发现它们与我们的神经细胞有着惊人的分子相似性。栉水母有神经网,与我们的神经网有关键的不同之处,也有相似之处。神经元是一次进化然后分化,还是不止一次并行进化?它们是马赛克吗,每一块都有不同的起源?这些都是有待解决的悬而未决的问题",该研究的共同第一作者、基因组调控中心博士后研究员泽维尔-格劳-博韦(XavierGrau-Bové)博士说。该研究的作者相信,随着世界各地的研究人员继续对不同物种的高质量基因组进行测序,神经元的起源和其他细胞类型的进化将变得越来越清晰。"细胞是生命的基本单位,因此了解细胞如何产生或随时间发生变化是解释生命进化故事的关键。胎生动物、栉水母、海绵和其他非传统模式动物蕴藏着我们刚刚开始揭开的秘密,"该研究的通讯作者、基因组调控中心初级组组长、ICREA研究教授ArnauSebé-Pedros总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1385699.htm手机版:https://m.cnbeta.com.tw/view/1385699.htm

封面图片

将大脑免疫细胞转化为神经元有助于中风后的康复

将大脑免疫细胞转化为神经元有助于中风后的康复中风或其他脑血管疾病导致脑部血流不畅后,神经元要么受损,要么死亡,造成特有的生理和心理缺陷。现在,日本九州大学的研究人员将大脑的主要免疫细胞小胶质细胞转化为神经元,从而恢复了受中风影响的小鼠的运动功能。该研究的通讯作者中岛健一说:"当我们被割伤或骨折时,我们的皮肤和骨骼细胞可以复制,从而治愈我们的身体。但我们大脑中的神经元却不容易再生,因此损伤往往是永久性的。因此,我们需要找到新的方法来安置失去的神经元。"研究人员从之前的研究中得知,在健康小鼠的大脑中,小胶质细胞可以被诱导发育成神经元。中风后,负责清除受损或死亡脑细胞的小胶质细胞向受伤部位移动并迅速复制。该研究的第一作者入江隆说:"小胶质细胞数量丰富,而且正好位于我们需要它们的地方,因此它们是理想的转化目标。"研究人员通过暂时阻断右侧大脑中动脉诱导小鼠中风,大脑中动脉是大脑中的主要血管,通常与人类中风有关。一周后,研究人员观察到小鼠的运动功能出现障碍,纹状体中的神经元明显减少,而纹状体是大脑中参与决策、行动规划和运动控制的区域。他们使用慢病毒--一种用作病毒载体的亚类逆转录病毒--将DNA插入中风损伤部位的小胶质细胞。DNA中含有产生NeuroD1的指令,NeuroD1是一种诱导神经元转换的蛋白质。在随后的几周里,这些细胞发育成了神经元。在小胶质细胞中产生NeuroD1蛋白可诱导它们发育成神经元(红色),减少神经元缺失区域(暗斑)。DNA植入三周后,小鼠的运动功能得到改善。到八周时,新诱导的神经元已成功融入大脑回路。当研究人员移除新神经元时,运动功能的改善消失了,这证实了新神经元对小鼠的康复做出了直接贡献。中岛说:"这些结果很有希望。下一步是测试NeuroD1是否也能有效地将人类小胶质细胞转化为神经元,并确认我们将基因插入小胶质细胞的方法是安全的。"由于小鼠是在中风后的急性期接受治疗的,此时小胶质细胞已经迁移到损伤部位,因此研究人员下一步计划观察他们是否能在后期阶段让小鼠产生康复效果。该研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391667.htm手机版:https://m.cnbeta.com.tw/view/1391667.htm

封面图片

研究人员发现神经元能在我们说话前预测我们要说什么

研究人员发现神经元能在我们说话前预测我们要说什么麻省总医院(MGH)的研究人员最近进行了一项研究,利用先进的大脑记录方法揭示了人脑中神经元的协作功能,从而使人们能够将自己的想法形成文字,并随后用语言表达出来。这些发现共同提供了一幅详细的地图,显示辅音和元音等语音如何在说话之前就在大脑中呈现,以及在语言生成过程中它们是如何串联在一起的。这项发表在《自然》(Nature)杂志上的研究揭示了大脑神经元对语言生成的影响,这将有助于改善对言语和语言障碍的理解和治疗。资深作者、麻省总医院和哈佛医学院神经外科副教授、医学博士齐夫-威廉姆斯(ZivWilliams)说:"虽然说话通常看起来很容易,但我们的大脑在自然说话的过程中会执行许多复杂的认知步骤--包括想出我们想说的话、计划发音动作以及发出我们想要的声音。我们的大脑以惊人的速度完成了这些壮举--在自然语音中大约每秒三个单词,而且错误极少。然而,我们是如何精确地完成这一壮举的一直是个谜"。神经元记录技术的突破威廉姆斯和他的同事利用一种名为"神经像素"(Neuropixels)探针的尖端技术,记录了人脑前额叶皮层单个神经元的活动。他们还发现,大脑中存在着专门负责说话和听力的独立神经元群。在人体中使用Neuropixels探头是MGH的首创。威廉姆斯说:"这些探针非常了不起--它们比人类头发丝的宽度还小,却拥有数百个通道,能够同时记录数十甚至数百个单个神经元的活动,因此,使用这些探针可以提供前所未有的新见解,让我们了解人类神经元是如何集体行动的,以及它们是如何共同产生语言等复杂的人类行为的。"威廉姆斯曾与麻省总医院和哈佛医学院神经学教授、医学博士悉尼-卡什(SydneyCash)合作开发这些记录技术,后者也是这项研究的负责人。解码语音要素这项研究显示了大脑中的神经元是如何代表构建口语词汇所涉及的一些最基本要素的--从简单的语音(称为音素)到将其组合成更复杂的字符串(如音节)。例如,"狗"(dog)一词需要辅音"da",它是通过舌头接触牙齿后面的硬腭产生的。通过记录单个神经元,研究人员发现,某些神经元会在这个音素被大声说出之前变得活跃。其他神经元则反映了构词过程中更复杂的方面,如将音素具体组合成音节。研究人员利用他们的技术表明,可以在个人发音之前可靠地确定他们会说的语音。换句话说,科学家可以在实际说话之前预测辅音和元音的组合。利用这种能力,可以制造出能够产生合成语音的人工假肢或脑机接口,这将使一系列病人受益。这项研究的共同作者阿尔琼-卡纳(ArjunKhanna)说:"在多种神经系统疾病中都能观察到语音和语言网络的中断,包括中风、脑外伤、肿瘤、神经退行性疾病、神经发育障碍等等。我们希望更好地了解实现语音和语言的基本神经回路将为开发这些疾病的治疗方法铺平道路。"研究人员希望通过研究更复杂的语言过程来扩展他们的工作,从而研究人们如何选择他们想说的话,以及大脑如何将词语组合成句子,向他人传达个人的思想和情感等相关问题。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418453.htm手机版:https://m.cnbeta.com.tw/view/1418453.htm

封面图片

新发现的生物标记物对神经元再生有预测能力

新发现的生物标记物对神经元再生有预测能力神经元是构成我们大脑和脊髓的主要细胞,是受伤后再生最慢的细胞之一,许多神经元无法完全再生。尽管科学家在理解神经元再生方面取得了进展,但仍不清楚为什么有些神经元能够再生而另一些神经元却不能。加州大学圣地亚哥分校医学院的研究人员利用单细胞RNA测序(一种确定单个细胞中哪些基因被激活的方法)发现了一种新的生物标记,可用于预测神经元在受伤后是否会再生。他们在小鼠身上测试了他们的发现,发现该生物标志物在整个神经系统和不同发育阶段的神经元中始终可靠。该研究于2023年10月16日发表在《Neuron》杂志上。“单细胞测序技术正在帮助我们比以往任何时候都更详细地了解神经元的生物学,这项研究确实证明了这种能力,”资深作者、神经科学系教授郑滨海博士说。加州大学圣地亚哥分校医学院。“我们在这里发现的可能只是基于单细胞数据的新一代复杂生物标记物的开始。”研究人员重点关注皮质脊髓束的神经元,这是中枢神经系统的关键部分,有助于控制运动。受伤后,这些神经元是最不可能再生轴突的神经元之一——轴突是神经元用来相互交流的又长又薄的结构。这就是为什么大脑和脊髓损伤如此具有破坏性。神经元(此处以红色和黄色显示)是受伤后再生最慢的细胞之一。在小鼠大脑的这一部分中,黄色神经元正在再生,而红色神经元则无法再生。图片来源:加州大学圣地亚哥分校健康科学第一作者HugoKim博士说:“如果你的手臂或腿部受伤,这些神经可以再生,并且通常可以完全恢复功能,但中枢神经系统的情况并非如此。大多数大脑和脊髓损伤很难恢复,因为这些细胞的再生能力非常有限。”识别生物标志物研究人员利用单细胞RNA测序来分析脊髓损伤小鼠神经元的基因表达。他们利用现有的分子技术鼓励这些神经元再生,但最终,这只对部分细胞有效。这种实验设置使研究人员能够比较再生和非再生神经元的测序数据。此外,通过关注相对较少的细胞(仅超过300个),研究人员能够非常仔细地观察每个细胞。“就像每个人都是不同的一样,每个细胞都有自己独特的生物学特性,”郑说。“探索细胞之间的微小差异可以告诉我们很多关于这些细胞如何工作的信息。”HugoKim博士(左)在郑滨海博士(右)的监督下设计并执行了单细胞RNA测序实验。图片来源:加州大学圣地亚哥分校健康科学研究人员使用计算机算法分析测序数据,确定了一种独特的基因表达模式,可以预测单个神经元在受伤后是否最终会再生。该模式还包括一些以前从未涉及神经元再生的基因。“这就像神经元再生的分子指纹,”郑补充道。验证再生分类器为了验证他们的发现,研究人员在26个已发表的单细胞RNA测序数据集上测试了这种分子指纹(他们将其命名为再生分类器)。这些数据集包括来自神经系统各个部分和不同发育阶段的神经元。研究小组发现,除了少数例外,再生分类器成功预测了单个神经元的再生潜力,并能够重现先前研究中的已知趋势,例如出生后神经元再生的急剧下降。“根据来自完全不同研究领域的多组数据验证结果告诉我们,我们已经发现了有关神经元再生的基础生物学的一些基本知识,”郑说。“我们需要做更多的工作来完善我们的方法,但我认为我们已经发现了一种对所有再生神经元都通用的模式。”虽然小鼠身上的结果很有希望,但研究人员提醒说,目前再生分类器是一种帮助实验室神经科学研究人员的工具,而不是诊所患者的诊断测试。“在临床环境中使用单细胞测序仍然存在很多障碍,例如成本高、分析大量数据困难,以及最重要的是,无法获取感兴趣的组织,”郑说。“目前,我们有兴趣探索如何在临床前环境中使用再生分类器来预测新再生疗法的有效性,并帮助这些疗法更接近临床试验。”...PC版:https://www.cnbeta.com.tw/articles/soft/1391581.htm手机版:https://m.cnbeta.com.tw/view/1391581.htm

封面图片

研究人员制造出混合大脑:让一个物种的神经元帮助另一个物种

研究人员制造出混合大脑:让一个物种的神经元帮助另一个物种大鼠(红色)和小鼠(绿色)神经元的混合体在混合大脑中形成了环形气味处理中心什么是混合大脑?听起来像是科幻电影情节中的东西--或者是史蒂夫-马丁主演的80年代古怪喜剧--但它实际上是两个物种细胞的结合,发育成一个完整的功能性大脑。因此,杂交脑通过创建"合成"神经回路来恢复受损或退化大脑的功能,对于推动再生神经科学的发展非常重要。在哥伦比亚大学欧文医学中心研究人员领导的一项新研究中,大鼠干细胞在发育初期就被引入到小鼠细胞中,从而产生了利用整合的大鼠细胞嗅觉的小鼠大脑。哥伦比亚大学瓦格罗斯内外科医学院遗传学和发育学教授、该研究的共同通讯作者克里斯汀-鲍德温(KristinBaldwin)说:"我们拥有漂亮的培养皿细胞模型和称为器官组织的三维培养物,它们都有各自的优点。但它们都无法让你确定细胞是否真正发挥了最高水平的功能。这项研究开始向我们展示,我们如何扩大大脑的灵活性,使其能够容纳来自人机界面或移植干细胞的其他类型的输入。"大鼠-小鼠嵌合体的制作示意图Throesch等人研究人员将大鼠胚胎干细胞植入小鼠胚泡(受精卵分裂而成的细胞团),然后将胚泡移植到代孕小鼠妈妈的子宫内发育。尽管在进化过程中存在差异(大鼠大脑发育较慢,体积较大),但研究人员观察到,大鼠细胞与小鼠神经元同步生长。在成熟的大鼠-小鼠或嵌合体中,大鼠细胞整合成整个小鼠大脑的神经回路,并与小鼠神经元形成活跃的连接。鲍德温说:"几乎在整个小鼠大脑中都能看到大鼠细胞,这让我们相当惊讶。它告诉我们,插入的障碍很少,这表明许多种小鼠神经元都可以被类似的大鼠神经元取代。"接下来是测试大鼠细胞的功能能力,以及它们是否能取代受损的小鼠神经元。研究人员开发了小鼠模型,这些小鼠的嗅觉神经元(OSNs)在基因上有缺陷或被消融,即被破坏,而嗅觉神经元是检测和传递气味信息的神经元。他们发现,大鼠细胞拯救了小鼠大脑。鲍德温说:"我们在每个小鼠笼子里都藏了一块饼干,结果非常惊讶地发现,它们能通过大鼠神经元找到饼干。"然而,与OSN被破坏的小鼠相比,OSN被基因沉默(即神经元存在,只是不工作)的小鼠找到饼干的成功率较低。这表明,增加替代神经元并非"即插即用"。如果想获得功能性替代神经元,可能需要清空闲置在那里的功能障碍神经元,这可能是某些神经退行性疾病的情况,也可能是自闭症和精神分裂症等神经发育障碍的情况。研究人员在研究中遇到的一个问题是,大鼠细胞随机分布在不同的小鼠体内,这阻碍了他们将研究扩展到其他神经系统。目前,他们正试图找到驱动插入细胞发育成特定细胞类型的方法,这可能会提供更高的精确度。扫清这一障碍将为创造具有灵长类神经元的混合大脑铺平道路,这将帮助我们更接近了解人类疾病。这项研究发表在《细胞》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1428726.htm手机版:https://m.cnbeta.com.tw/view/1428726.htm

封面图片

反思大脑设计:人类神经元的独特布线挑战了旧有假设

反思大脑设计:人类神经元的独特布线挑战了旧有假设新研究发现,与小鼠的循环互动不同,人类新皮质神经元单向交流效率更高。这一发现可能会通过模仿人类大脑的连通性来促进人工神经网络的发展。记录多达十个神经元活动的多补丁实验装置。图片来源:Charité彭扬帆新皮质是人类智力的关键结构,厚度不足五毫米。在大脑的最外层,200亿个神经元处理着无数的感官知觉,规划着行动,并构成了我们意识的基础。这些神经元是如何处理所有这些复杂信息的呢?这在很大程度上取决于它们之间的"连接"方式。夏里特神经生理学研究所所长约尔格-盖格(JörgGeiger)教授解释说:"我们以前对新皮层神经结构的理解主要基于小鼠等动物模型的研究结果。在这些模型中,相邻的神经元经常像对话一样相互交流。一个神经元向另一个神经元发出信号,然后另一个神经元再向它发出信号。这意味着信息经常以循环往复的方式流动"。带有机器人机械手的多通道装置,可在两轮实验之间自动冲洗玻璃移液管。图片来源:Charité彭扬帆人类的新皮质比小鼠的新皮质更厚、更复杂。尽管如此,研究人员之前一直假设--部分原因是缺乏数据--它遵循相同的基本连接原则。盖革领导的夏里特研究小组现在利用极其罕见的组织样本和最先进的技术证明了事实并非如此。在这项研究中,研究人员检查了23名在夏里特接受神经外科手术治疗耐药性癫痫患者的脑组织。在手术过程中,医学上有必要切除脑组织,以便观察其下的病变结构。患者同意将这些组织用于研究目的。神经元的旋转重建。图片来源:CharitéSabineGrosser为了能够观察人类新皮层最外层相邻神经元之间的信号流,研究小组开发出了一种改进版的"multipatch"技术。这样,研究人员就能同时监听多达十个神经元之间的通信。因此,他们能够在细胞停止体外活动前的短时间内进行必要数量的测量,以绘制网络图。他们分析了近1170个神经元之间的通信渠道,以及约7200个可能的连接。他们发现,只有一小部分神经元之间进行了相互对话。"人类的信息往往是单向流动的。它很少直接或通过循环返回起点,"该论文的第一作者彭扬帆博士解释说。他曾在神经生理学研究所从事这项研究,目前在夏里特神经学系和神经科学研究中心工作。研究小组根据人类网络结构的基本原理设计了一种计算机模拟,以证明这种前向信号流在处理数据方面的优势。来自多配接装置的微量移液管接近单个神经元。图片来源:CharitéFranzMittermaier研究人员给人工神经网络布置了一项典型的机器学习任务:从口语数字录音中识别出正确的数字。在这项语音识别任务中,模仿人类结构的网络模型比以小鼠为模型的网络模型获得了更多的正确响应。它的效率也更高,同样的成绩在小鼠模型中需要相当于380个神经元,而在人类模型中只需要150个神经元。"我们在人类身上看到的定向网络结构更强大,也更节省资源,因为更多独立的神经元可以同时处理不同的任务,"彭解释道。"这意味着局部网络可以存储更多信息。目前还不清楚我们在颞叶皮层最外层的发现是否会扩展到其他皮层区域,也不清楚这些发现能在多大程度上解释人类独特的认知能力。"过去,人工智能开发人员在设计人工神经网络时会从生物模型中寻找灵感,但也会独立于生物模型来优化算法。盖格说:"许多人工神经网络已经使用了某种形式的前向连接,因为它能为某些任务带来更好的结果。人脑也显示出类似的网络原理,这令人着迷。这些对人类新皮质中具有成本效益的信息处理的洞察,可以为完善人工智能网络提供更多灵感"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428037.htm手机版:https://m.cnbeta.com.tw/view/1428037.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人