突变之谜:揭开COVID-19快速传播背后的秘密

突变之谜:揭开COVID-19快速传播背后的秘密RIKEN研究人员的一项详细分析表明,COVID-19的快速传播可能部分是由于SARS-CoV-2病毒基因组的早期突变所造成的结构变化。这一发现可能有助于为下一代疫苗和抗病毒药物的开发提供信息。在整个COVID-19大流行期间,Alpha、Delta、Omicron和其他令人关注的变种一直在制造新闻事件。但是最重要的变异可能发生在大流行病的早期,它可能使病毒能够如此迅速地传播。理化学研究所计算科学中心(R-CCS)的YujiSugita和研究时在R-CCS工作的HishamDokainish调查了突变对病毒结构的影响。他们通过模拟在病毒重要的尖峰蛋白的不同形式中发现的分子的原子位置来做到这一点--这是冠状病毒用来结合和进入人类细胞的工具。他们发现,一个氨基酸的替换改变了这种蛋白质的形状,帮助SARS-CoV-2适应人类宿主。这一发现表明,即使是微小的突变--在这种情况下交换一个氨基酸--也能极大地影响蛋白质的动态。导致COVID-19的病毒SARS-CoV2的尖峰字幕。理化学研究所的研究人员发现,D614G突变将穗状蛋白重组为一种为感染细胞做准备的状态。为了了解为什么这种突变被证明对病毒如此有利,这对夫妇对蛋白质的结构和稳定性进行了详细的模拟。他们的分析--使用理化学研究所Fugaku超级计算机--世界上最快的计算机之一--揭示了该突变(称为D614G)是如何打破与Spike蛋白的第二个亚单位的离子键的。它还改变了附近一个环形结构的形状,从而改变了整个蛋白质的方向,将其锁定为一种使病毒更容易进入细胞的形式(如图)。Sugita解释说,他还隶属于理化学研究所生物系统动力学研究中心,"由单一突变引起的分子内互动的单一和局部变化可能会影响尖峰蛋白的整体结构。由此产生的突变体被证明更善于在人类宿主之间复制和传播,而且D614Glineage很快就超过了其祖先的品系,并在全球范围内传播。它仍然是随后的每一个显性变体的固定物。"Sugita的团队现在正在对大流行过程中后来出现的适应性病毒突变进行类似的调查,包括那些在Omicron变体中发现的突变。他说:"从我们的分子动力学模拟中获得的信息应该有助于增加我们找到有效药物和其他药品的机会。"...PC版:https://www.cnbeta.com.tw/articles/soft/1359553.htm手机版:https://m.cnbeta.com.tw/view/1359553.htm

相关推荐

封面图片

科学家发现 COVID-19 的关键弱点

科学家发现COVID-19的关键弱点加州大学河滨分校研究小组在《病毒》杂志上发表的一篇新论文中描述了一项重要发现。COVID中负责病毒复制的N蛋白需要人体细胞的帮助才能完成工作。细胞中的遗传指令从DNA转录到信使RNA,然后翻译成蛋白质,从而实现生长和与其他细胞交流等功能。翻译之后,蛋白质往往需要酶的额外修饰。这些所谓的翻译后修饰可确保蛋白质以独特的方式完成其预期任务。COVID利用了一种称为SUMOylation的人类翻译后过程,它能将病毒的N蛋白引导到正确的位置,以便在感染人类细胞后包装其基因组。一旦到达正确的位置,该蛋白就能开始将其基因拷贝到新的传染性病毒颗粒中,侵入我们更多的细胞,让我们病得更重。这项新研究的合著者、加州大学旧金山分校综合基因组生物学研究所蛋白质组学核心实验室经理张泉清说:"如果位置不对,病毒就无法感染我们。"引发COVID-19的单个病毒。图片来源:MayaPetersKostman/创新基因组研究所蛋白质组学是研究生物体制造的所有蛋白质、它们如何被其他酶修饰以及它们在生物体中发挥的作用。"如果某人受到感染,他或她的某种蛋白质可能会出现与之前不同的表现。张说:"这正是我们的设备所要寻找的。"在这种情况下,研究小组设计并进行了实验,使COVID蛋白质的翻译后修饰变得一目了然。UCR生物工程教授、论文通讯作者廖嘉宇说:"我们利用荧光向我们展示了病毒与人类蛋白质相互作用并制造新病毒--传染性病毒粒子的位置。这种方法比其他技术更灵敏,能让我们更全面地了解人类蛋白质和病毒蛋白质之间的所有相互作用。"生物工程团队此前利用类似方法发现,两种最常见的流感病毒--甲型流感和乙型流感需要相同的翻译后SUMOylation修饰才能复制。这篇论文表明,COVID依赖于SUMOylation蛋白,就像流感一样。阻止人类蛋白质的进入将使我们的免疫系统能够杀死病毒。目前,治疗COVID最有效的方法是Paxlovid,它可以抑制病毒复制。不过,患者需要在感染后三天内服用。如果过了三天再服用,效果就没那么好了。基于这一发现的新药将对处于各个感染阶段的患者都有用。病毒之间的相似性可能会带来全新的抗病毒药物。如果有足够的支持,Liao估计这些药物可以在五年内开发出来。"我认为其他病毒也可能以这种方式起作用,"廖说。"最终,我们希望既能阻断流感,也能阻断COVID-19,还有可能阻断其他病毒,如RSV和埃博拉病毒。我们正在进行新的发现,以帮助实现这一目标。"...PC版:https://www.cnbeta.com.tw/articles/soft/1384079.htm手机版:https://m.cnbeta.com.tw/view/1384079.htm

封面图片

基因优势:揭开COVID-19"超级躲避者"的秘密

基因优势:揭开COVID-19"超级躲避者"的秘密科学家们发现了一种与无症状COVID-19病例有关的基因变异--HLA-B*15:01,这为新的治疗方法和疫苗开辟了潜在的途径。感染COVID-19但从未出现症状的人--即所谓的"超级躲避者"--可能有一张基因王牌。根据加州大学旧金山分校研究人员领导的一项新研究,他们携带特定基因变异的几率是出现症状者的两倍多,而这种基因变异有助于他们消灭病毒。该论文最近发表在《自然》(Nature)杂志上,首次证明了无症状SARS-CoV-2的遗传基础。这项研究有助于解开为什么有些人会感染COVID-19而不发病的谜团。HLA基因变异的作用秘密在于人类白细胞抗原(HLA),即向免疫系统发出信号的蛋白质标记。编码HLA的一个基因发生变异,似乎有助于杀死病毒的T细胞识别SARS-CoV-2并发起闪电式攻击。一些携带这种变异基因的人的T细胞可以识别这种新型冠状病毒,即使他们以前从未接触过这种病毒,这要归功于它与他们已经知道的季节性感冒病毒的相似性。这一发现为药物和疫苗找到了新的靶点。肽NQK-Q8(浅色)是SARS-CoV-2的一种尖峰蛋白,病毒利用它进入细胞,它与HLA-B*15:01沟(橙色)结合。插图基于奥古斯托等人在2023年发表的HLA-B*15:01与SARS-CoV-2病毒尖峰衍生肽NQKLIANQF复合物的晶体结构(PDB条目-8ELH)(《自然》)。图片来源:AndréLuizLourenço该研究的首席研究员、加州大学旧金山分校威尔神经科学研究所(WeillInstituteforNeurosciences)成员、神经病学、流行病学和生物统计学教授吉尔-霍伦巴赫(JillHollenbach)博士解释说:"如果你有一支能够及早识别敌人的军队,那将是一个巨大的优势。这就好比有了做好战斗准备的士兵,他们已经知道要寻找什么,知道这些都是坏人"。HLA-B*15:01突变的流行和影响HLA-B*15:01突变非常普遍,在研究人群中约有10%的人携带这种突变。它并不能阻止病毒感染细胞,反而会阻止人们出现任何症状。这包括流鼻涕,甚至是几乎不明显的喉咙痛。加州大学旧金山分校的研究人员发现,在感染后仍无症状的研究人群中,有20%的人携带至少一个HLA-B*15:01变体拷贝,而在报告有症状的人群中,这一比例仅为9%。携带两个变异体拷贝的人避免生病的几率要大得多,是携带者的八倍多。研究人员很早就怀疑HLA与此有关,幸运的是,全国登记册中包含了他们正在寻找的数据。全国骨髓捐献者计划/BeTheMatch是美国最大的HLA类型志愿捐献者登记处,它为捐献者和需要骨髓移植的人牵线搭桥。但他们仍需要了解捐献者对COVID-19的抵抗情况。于是,他们求助于加州大学旧金山分校开发的一款名为COVID-19公民科学研究的移动应用程序。他们招募了近3万人,这些人也在骨髓登记册中,并在大流行的第一年进行了跟踪。当时,疫苗尚未问世,许多人因工作需要或在可能暴露的情况下接受了常规COVID检测。加州大学旧金山分校流行病学和生物统计学教授、医学博士、公共卫生硕士马克-普莱彻(MarkPletcher)说:"我们并没有打算研究遗传学,但我们很高兴看到我们与霍伦巴赫博士和国家骨髓捐献计划的多学科合作取得了这一成果。"样本限制和研究结果主要研究群体仅限于那些自我认同为白人的人,因为最终的研究受访者中没有足够的其他民族和种族群体的人可供分析。研究人员确定了1428名未接种疫苗的捐献者,他们在2020年2月至2021年4月底期间检测结果呈阳性,当时疫苗还未广泛上市,检测结果还需要很多天才能出来。其中,136人在检测结果呈阳性前后至少两周内没有任何症状。只有一种HLA变异--HLA-B*15:01--与无症状COVID-19感染有很强的相关性,而且这种情况在两个独立的队列中都得到了证实。重症COVID-19感染的风险因素,如年龄较大、超重和患有糖尿病等慢性疾病,似乎与无症状感染者无关。国家骨髓捐献计划/BeTheMatch研究副总裁马丁-迈尔斯(MartinMaiers)说:"我们很荣幸能合作开展研究,这项研究有可能利用长期公共投资建立国家登记处,帮助治疗疾病,提高我们避免未来流行病的能力。"了解免疫反应为了弄清HLA-B15是如何消灭病毒的,霍伦巴赫团队与澳大利亚拉筹伯大学的研究人员进行了合作。他们研究了T细胞记忆的概念,即免疫系统如何记忆以前的感染。研究人员观察了携带HLA-B15但从未接触过SARS-CoV-2病毒的人的T细胞,发现这些细胞仍然对新型冠状病毒中名为NQK-Q8肽的一部分有反应。他们得出的结论是,接触过一些季节性冠状病毒(这些冠状病毒有一个非常相似的肽,叫做NQK-A8)的人体内的T细胞能够迅速识别SARS-CoV-2病毒,并做出更快、更有效的免疫反应。拉筹伯大学教授兼实验室主任斯蒂芬妮-格拉斯(StephanieGras)说:"通过研究他们的免疫反应,这也许能让我们找出促进对SARS-CoV-2免疫保护的新方法,从而可用于未来疫苗或药物的开发。"...PC版:https://www.cnbeta.com.tw/articles/soft/1396963.htm手机版:https://m.cnbeta.com.tw/view/1396963.htm

封面图片

揭开COVID-19 RNA劫持的面纱: 打开创新治疗的大门

揭开COVID-19RNA劫持的面纱:打开创新治疗的大门哥德堡大学的研究人员发现,COVID-19劫持了受感染细胞中的重要RNA机制,造成了破坏性的变化,这些变化有可能用新的药物来逆转。该研究发现,SARS-CoV-2感染破坏了RNA修饰,包括m6A,一种基因表达的关键调节器。m6ARNA修饰损失的程度和规模之大令研究人员吃惊,他们还观察到不同的冠状病毒变体对m6A水平有不同的影响。这一见解可能为开发针对COVID-19的新疗法铺平道路。人体细胞中的遗传物质由DNA组成,它负责遗传信息的长期存储。RNA将这些编码信息带到细胞中进行转录和翻译。这些过程使它们能够制造蛋白质,执行大多数细胞内任务。细胞的RNA是可以修改的,以允许正确地将DNA信息转移到蛋白质上。近年来,对这些RNA修饰的复杂性和重要性的科学认识已经增长。已经表明,RNA修饰发生在各种病毒中,但病毒在感染细胞时究竟如何影响RNA修饰过程还不得而知。这项研究报告说,SARS-CoV-2感染破坏了RNA修饰,而这些RNA修饰变化的程度令研究人员感到惊讶。该研究结果背后的小组:RoshanVaid,TanmoyMondal,KristinaNyström和KetanThombare受SARS-CoV-2影响的修饰之一,被称为m6A(基因表达的多面调节器),对RNA的基本功能非常重要,包括将数据运送到细胞的蛋白质制造部分,并在那里转录和翻译成氨基酸。"我们对SARS-CoV-2感染中m6ARNA修饰损失的程度和急剧规模感到惊讶。我们还发现冠状病毒变种对m6A水平有不同的影响,"领导该项目的哥德堡大学Sahlgrenska学院的研究员TanmoyMondal说。TanmoyMondalm6A修饰部分由METTL3酶(m6A甲基转移酶)调节。该研究表明,这种酶的定位受到感染的影响;阻断细胞中的核出口蛋白可以使METTL3恢复到原来的定位,而电晕感染正在进行;这可能起到阻止病毒进展的作用。这样就有可能在针对COVID-19的新药中开发出这种阻断作用。该研究结果可能提供了新的线索,说明为什么有些人在COVID之后仍有长期的慢性症状("COVID后症"或"长COVID")。科学家们指出,这种感染似乎通过去除m6A修饰在宿主细胞中留下了持久的痕迹,这可能会导致持续的COVID样症状。他们利用可用于研究SARS-CoV-2感染的各种既定研究模型进行研究。由于这些研究是在受控的实验室环境中实施的,因此需要进行更多的研究,以显示病毒在现实生活中如何与人类细胞相互作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1351825.htm手机版:https://m.cnbeta.com.tw/view/1351825.htm

封面图片

研究人员发现引发COVID-19的冠状病毒的关键"弱点"

研究人员发现引发COVID-19的冠状病毒的关键"弱点"英属哥伦比亚大学的研究人员发现了SARS-CoV-2病毒的所有主要变体的一个关键漏洞,包括新发现的BA.1和BA.2Omicron亚变体。中和抗体可以针对这一弱点,有可能为对各种变体普遍有效的治疗打开大门。冷冻电子显微镜显示了VHAb6抗体片段(红色)如何附着在SARS-CoV-2尖峰蛋白(灰色)的脆弱部位,以阻止病毒与人类ACE2细胞受体(蓝色)结合。这项研究发表在《自然-通讯》杂志上,它使用低温电子显微镜(cryo-EM)来确定病毒尖峰蛋白上的脆弱区域或表位的原子结构。该研究还报告了一个VHAb6抗体片段,它能与该位置结合并中和每一个主要变体。UBC大学医学院教授、该研究的资深作者SriramSubramaniam博士说:"这是一种高度适应性的病毒,已经进化到可以逃避大多数现有的抗体治疗,以及疫苗和自然感染赋予的大部分免疫力。这项研究揭示了一个弱点,这个弱点在不同的变体中基本没有变化,可以被一个抗体片段中和。它为设计有可能帮助许多脆弱人群的泛变种治疗方法创造了条件。"识别COVID-19的万能钥匙我们的身体自然地制造抗体来对抗感染,但它们也可能在实验室中被制造出来,并作为一种治疗方法给病人使用。尽管已经为COVID-19创造了一些抗体治疗方法,但面对像Omicron这样高度变异的变体,它们的疗效已经下降。"抗体以一种非常具体的方式附着在病毒上,就像一把钥匙进入一把锁。但当病毒发生变异时,钥匙就不再适用了,"Subramaniam博士说。"我们一直在寻找万能钥匙--即使在广泛的变异后仍能继续中和病毒的抗体。这篇新论文将抗体片段VHAb6确定为"万能钥匙",已经发现它对Alpha、Beta、Gamma、Delta、Kappa、Epsilon和Omicron变种有效。通过与尖峰蛋白上的表位结合并阻止SARS-CoV-2感染人体细胞,该片段可中和病毒。这一发现是苏布拉马尼亚姆博士的团队与匹兹堡大学MitkoDimitrov和WeiLi博士领导的同事之间长期而富有成效的合作的最新成果。匹兹堡的团队一直在筛选大型抗体库并测试它们对COVID-19的有效性,而UBC的团队一直在使用低温电镜研究尖峰蛋白的分子结构和特征。专注于COVID-19的薄弱点UBC团队因其在使用低温电镜以原子分辨率观察蛋白质-蛋白质和蛋白质-抗体相互作用的专业知识而闻名于世。在今年早些时候发表在《科学》上的另一篇论文中,他们首次报告了Omicron尖峰蛋白和人类细胞受体ACE2之间的接触区结构,为Omicron增强的病毒适应性提供了分子解释。通过绘制每个尖峰蛋白的分子结构图,该团队一直在寻找可能为新疗法提供信息的脆弱区域。苏布拉马尼亚姆博士说:"我们在这篇论文中描述的表位大多远离突变的热点,这就是为什么它的能力在不同的变体中得以保留。现在我们已经详细描述了这个部位的结构,它开启了一个全新的治疗可能性领域。"Subramaniam博士说,这个关键的弱点现在可以被制药商利用,而且由于该部位相对无突变,所产生的治疗方法可以对现有的,甚至是未来的变种有效。PC版:https://www.cnbeta.com/articles/soft/1311789.htm手机版:https://m.cnbeta.com/view/1311789.htm

封面图片

科学家们增强基于蛋白质的COVID-19疫苗的效果 将免疫反应提高25倍

科学家们增强基于蛋白质的COVID-19疫苗的效果将免疫反应提高25倍具有讽刺意味的是,一些疫苗需要自己的"助推器"。一种被称为佐剂的成分被添加到疫苗中,以帮助引起更强大的免疫反应,更好地训练身体来对抗病原体。科学家们报告说,与单独注射疫苗相比,一种物质能将小鼠对实验性COVID-19疫苗的免疫反应提高25倍。今天(2022年8月31日)发表在《ACS传染病》杂志上的一篇新论文描述了这项研究的细节。尽管在美国授权的第一批COVID-19疫苗应用了最先进的mRNA基因技术,但使用病原体的蛋白质这一久经考验的策略可以生产出制造成本更低、更容易储存的疫苗。到目前为止,美国食品和药物管理局(FDA)只批准了一种由Novavax生产的针对SARS-CoV-2的蛋白质疫苗。然而,许多目前可用的针对其他疾病的接种疫苗依赖于蛋白质或蛋白质的碎片,这些针剂含有佐剂以提高其有效性。科学家们已经发现,源自α-半乳糖甘油酰胺(αGC)的分子,一种来自海洋海绵的化合物可以充当佐剂。它们通过刺激一小部分免疫细胞群来发挥作用,这些免疫细胞对防御身体的病毒感染非常重要。RuiLuo、ZhengLiu和他们的同事已经设计出一种αGC的版本,以显著提高基于蛋白质的COVID-19疫苗所引起的免疫反应。该小组制作了四种αGC的类似物。他们将每一种加入到含有SARS-CoV-2尖峰蛋白的实验性疫苗中,该病毒利用尖峰蛋白来感染细胞。小鼠在29天内被注射了三次,研究人员跟踪了它们的免疫反应,直到第35天。为了测量佐剂的效果,科学家们仔细研究了免疫功能的各个方面,包括免疫系统消除病原体的两种方式:通过T细胞(直接杀死患病细胞)和抗体(抓住入侵微生物的免疫蛋白)。这四种物质都没有提高T细胞的反应,但它们都让免疫系统产生了干扰病毒的能力大得多的抗体。被称为αGC-CPOEt的类似物质催生了具有最大中和能力的抗体--比没有佐剂的疫苗所能引起的抗体大25倍。据研究人员称,这些结果表明,αGC-CPOEt值得进一步研究,作为一种潜在的佐剂来对抗COVID-19和其他传染病。PC版:https://www.cnbeta.com/articles/soft/1310917.htm手机版:https://m.cnbeta.com/view/1310917.htm

封面图片

科学家竞相完善有望取代Paxlovid的新型COVID-19口服药

科学家竞相完善有望取代Paxlovid的新型COVID-19口服药他们发表在《科学》杂志上的报告显示,一种替代药物--病毒木瓜蛋白酶样蛋白酶抑制剂能抑制动物的疾病进展,这是人类药物试验前的必要步骤。该研究的资深作者、罗格斯大学欧内斯特-马里奥药学院研究实验室副教授王军(音译)说:"COVID-19仍然是全美第三大死亡原因,因此,我们已经非常需要更多的治疗方案。当COVID-19不可避免地发生突变,导致Paxlovid无法发挥作用时,这种需求将变得更加迫切。"罗格斯大学的研究小组希望研制出一种能干扰病毒木瓜蛋白酶(PLpro)的药物,这种蛋白在所有已知的COVID-19株系中都发挥着重要功能。制作这种药物需要有关PLpro结构的详细信息,而王军的团队从罗格斯大学先进生物技术和医学中心(CABM)的Arnold实验室获得了这些信息。对PLpro结构的精确了解使王军的团队能够设计和合成85种候选药物,这些药物将与这一重要蛋白质结合并对其产生干扰。PLpro晶体结构显示了候选药物分子与蛋白质靶点结合的意想不到的排列方式,这为王教授的药物化学团队提供了创新的设计思路,CABM和罗格斯大学化学与化学生物学系教授EddyArnold说,"PLpro晶体结构显示了候选药物分子与蛋白质靶点结合的意想不到的排列方式,这为王教授的药物化学团队提供了创新的设计思路,"EddyArnold说。实验室测试表明,这些候选药物中最有效的是一种名为Jun12682的化合物,它能抑制几种SARS-CoV-2病毒株,包括能抵抗Paxlovid治疗的病毒株。俄克拉荷马州立大学的Deng实验室随后对感染SARS-CoV-2的小鼠进行的测试表明,口服Jun12682可以减少病毒的肺负荷和病变,同时提高存活率。王说:"我们在小鼠身上的治疗效果与Paxlovid在最初动物试验中的效果差不多。Paxlovid会干扰许多处方药,而大多数面临严重COVID-19最高风险的人都会服用其他处方药,因此这确实是个问题,我们针对主要的药物代谢酶测试了我们的候选药物Jun12682,没有证据表明它会干扰其他药物。"罗格斯大学已为Jun12682和其他84种候选药物提交了专利申请,并正在寻找合作伙伴,以帮助候选药物进入进一步的测试和开发阶段。编译来源:ScitechDailyDOI:10.1126/science.adm9724...PC版:https://www.cnbeta.com.tw/articles/soft/1433387.htm手机版:https://m.cnbeta.com.tw/view/1433387.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人