分子魔法:研究人员开发出比钢铁更坚固的轻质二维材料

分子魔法:研究人员开发出比钢铁更坚固的轻质二维材料研究人员已经开发出一种方法,在多层堆叠时保留被称为共价有机框架(COFs)的二维聚合物的机械性能。通过调整其分子结构,该团队创造了一种轻质材料,其强度是钢的数倍,即使在多层形式下也能保持其二维特性。潜在的应用包括过滤膜和升级的电池。这项研究还可以影响陶瓷和金属的设计,有可能使它们在较低的温度下制造和修复。"想想石墨铅笔,"马里兰大学(UMD)机械工程系的基石教授TengLi说。"它的核心是由石墨制成的,而石墨是由许多层石墨烯组成的,石墨烯已被发现是世界上最坚硬的材料。然而,石墨铅笔在所有的事实中并不强大,石墨甚至被用作润滑剂。"现在,李和莱斯大学和休斯顿大学的合作者已经找到了克服这一障碍的方法,通过仔细调整被称为共价有机框架(COFs)的二维聚合物的分子结构。这些发现在发表于《美国国家科学院院刊》的一项新研究中得到了详细说明。领导莱斯大学团队的莱斯大学材料科学和纳米工程教授JunLou说:"这是一个非常令人兴奋的起点。"研究人员发现的共价有机框架材料的一个样品,作为多层堆叠,保留了其二维机械性能。资料来源:GustavoRaskosky/莱斯大学利用分子水平的模拟,研究人员研究了不同的官能团--即分子元素的排列,然后设计了两种结构上有细微差别的COFs。然后他们研究了COFs在堆叠成层时的表现。结果发现,微小的结构差异导致了明显不同的结果。第一个COF,像大多数二维材料一样,只显示了层与层之间的微弱相互作用,而且随着层数的增加,强度和弹性都会下降。PNAS论文的共同作者、莱斯大学博士生QiyiFang说:"第二种COF则不同,它表现出强烈的层间相互作用,即使添加多层也能保持其良好的机械性能。"根据研究人员的说法,这种现象很可能是由于氢键的作用。"我们从模拟中发现,第二类COF中的强层间相互作用是由于其特殊官能团之间的氢键明显增强,"共同第一作者、UMD博士后研究员和李的研究小组成员彭正谦说。应用他们的发现,研究小组随后生产了一种轻质材料,它不仅比钢强数倍,而且即使在堆积成多层时也能保持其二维特性。其潜在的应用有很多。"COFs可以成为优秀的过滤膜,"莱斯的Lou说。"对于一个过滤系统来说,孔隙的官能团结构将是非常重要的。比如说,当你有脏水通过COF膜时,孔隙处的官能团将只捕获杂质,而允许所需的分子通过。在这个过程中,该膜的机械完整性将是非常重要的。现在我们有办法设计出非常坚固、非常抗断裂的多层二维聚合物,它们可以成为膜过滤应用的非常好的候选者。"另一个潜在的应用是用于升级电池:用硅取代石墨阳极将大大增加当前锂离子电池技术的存储容量。从这项研究中得到的启示还可能导致在设计广泛的材料方面取得进展,包括陶瓷和金属。例如,陶瓷依赖于在非常高的温度下形成的离子键,这就是为什么破碎的咖啡杯不容易被修复。同样,金属也需要在高温下锻造。通过研究人员正在探索的分子调整,可以想象类似的产品可以被制造和修复,而不需要调高温度。虽然眼前的背景是二维材料,但更广泛地说,研究人员正在开拓利用材料的有利特性而不受这些材料的限制的方法。...PC版:https://www.cnbeta.com.tw/articles/soft/1358423.htm手机版:https://m.cnbeta.com.tw/view/1358423.htm

相关推荐

封面图片

通向3D材料革命的大门:研究人员为石墨注入石墨烯元素

通向3D材料革命的大门:研究人员为石墨注入石墨烯元素华盛顿大学领导的研究小组发现,将石墨烯薄片以很小的扭曲角度堆叠在块状石墨上(上图),石墨烯-石墨界面(黄色)上的"奇异"特性就会渗入石墨本身。资料来源:埃利斯-汤普森多年来,科学家们一直在探索由单层原子组成的二维材料的潜力,以彻底改变计算、通信和能源等各个领域。在这些材料中,电子等亚原子粒子只能在二维空间运动,这导致了电子的异常行为和所谓的"奇异"特性。这些特性包括奇异的磁性、超导性和电子间的其他集体行为--所有这些都可能在计算、通信、能源和其他领域大有用武之地。传统上,研究人员认为这些奇异的二维特性只存在于单层薄片或短堆栈中,而这些材料的所谓"块体"版本则由于其复杂的三维原子结构而表现出不同的行为。与上述假设相反,华盛顿大学领导的研究小组于7月19日在《自然》杂志上发表的一项突破性研究表明,有可能赋予石墨这种日常铅笔中的大块三维材料以类似于其二维对应物石墨烯的特性。这一突破不仅出乎意料,研究小组还认为其方法可用于测试类似类型的块状材料是否也能具有类似二维的特性。如果是这样,二维薄片将不会是科学家们推动技术革命的唯一来源,块状三维材料可能同样有用。"将单层堆叠在单层上--或将两层堆叠在两层上--几年来一直是揭示二维材料新物理特性的重点。在这些实验方法中,出现了许多有趣的特性,"资深作者、华大物理学和材料科学与工程学助理教授马修-扬科维茨(MatthewYankowitz)说。"但是,如果不断增加层数会发生什么呢?最终,它必须停止,对吗?这就是直觉的暗示。但在这种情况下,直觉是错误的。在三维材料中混合二维特性是可能的。"由大阪大学和日本国立材料科学研究所的学者组成的研究小组采用了一种常用的方法来处理二维材料。他们以很小的扭曲角度将二维薄片堆叠在一起。研究人员将单层石墨烯置于薄的块状石墨晶体之上,并在两者之间引入了约1度的扭曲角。他们不仅在扭曲的界面上,而且在块状石墨内部发现了新颖的、意想不到的电学特性。Yankowitz同时也是华大清洁能源研究所和华大纳米工程系统研究所的教员,他解释说,扭曲角对于产生这些特性至关重要。二维薄片(如两片石墨烯)之间的扭曲角度会产生所谓的摩尔纹,从而改变电子等带电粒子的流动,诱导材料产生奇特的性质。在石墨和石墨烯的实验中,扭转角度也诱发了摩尔纹,产生了令人惊讶的结果。仅在石墨烯-石墨界面引入的扭曲改变了整个石墨材料的电特性。当施加磁场时,石墨晶体深处的电子表现出与扭曲界面类似的异常特性。从本质上讲,单个扭曲的石墨烯-石墨界面变得与块状石墨的其他部分密不可分地混合在一起。"虽然我们只是在石墨表面产生摩尔纹,但由此产生的特性却渗透到整个晶体中,"共同第一作者、华盛顿大学物理学博士后研究员达肯-沃特斯(DacenWaters)说。对于二维薄片来说,摩尔纹产生的特性可用于量子计算和其他应用。在三维材料中诱导类似的现象,将为研究不寻常和奇异的物质状态以及如何将它们带出实验室、带入我们的日常生活提供新的方法。共同第一作者、华盛顿大学物理学博士生埃利斯-汤普森(EllisThompson)说:"整个晶体都呈现出这种二维状态。这是影响块体材料中电子行为的一种全新方式。"扬科维茨和他的团队认为,他们在石墨烯和块状石墨晶体之间产生扭转角的方法可以用来制造其姊妹材料的2D-3D混合体,包括二碲化钨和五碲化锆。这将开启一种新方法,利用单一二维界面重新设计传统块体材料的特性。Yankowitz说:"这种方法可以成为研究具有混合二维和三维特性的材料中令人兴奋的新物理现象的一个真正丰富的乐园。"...PC版:https://www.cnbeta.com.tw/articles/soft/1371903.htm手机版:https://m.cnbeta.com.tw/view/1371903.htm

封面图片

研究人员通过彩虹散射破解"神奇材料"石墨烯的奥秘

研究人员通过彩虹散射破解"神奇材料"石墨烯的奥秘石墨烯还可能存在结构缺陷,在某些情况下,这些缺陷会对其功能造成损害,而在其他情况下,这些缺陷对其所选择的应用至关重要。这意味着,通过控制缺陷的实施,可以对石墨烯二维晶体的理想特性进行微调。在《欧洲物理杂志D》(EPJD)发表的一篇新论文中,塞尔维亚贝尔格莱德大学温查核科学研究所的米利沃耶-哈季约伊奇和马尔科-乔西奇研究了光子穿过石墨烯时的彩虹散射,以及它如何揭示这种神奇材料的结构和缺陷。虽然还有其他研究石墨烯瑕疵的方法,但这些方法都有缺点。例如,拉曼光谱无法区分某些缺陷类型,而高分辨率透射电子显微镜能以出色的分辨率表征晶体结构缺陷,但其使用的高能电子会使晶格退化。"彩虹效应在自然界中并不罕见。在原子和分子散射中也发现了彩虹效应。它是在薄晶体的离子散射实验中被探测到的。我们从理论上研究了低能质子在石墨烯上的散射,证明彩虹效应也发生在这一过程中,"Hadžijojić说。"此外,我们还证明,可以通过质子彩虹散射效应研究石墨烯结构和热振动"。二人利用一种称为彩虹散射的过程,观察了质子穿过石墨烯时所产生的衍射以及所形成的"彩虹"图案。研究人员对衍射图样进行了特征描述,发现完美的石墨烯呈现出彩虹图案,其中中间部分是一条单线,内部部分呈现出六边形对称图案,而不完美的石墨烯则不具备这种对称性。科学家们还得出结论,特定的缺陷类型会产生各自不同的彩虹图案,这可以在未来的研究中用于识别和表征石墨烯样品中的缺陷类型。哈季约吉奇总结说:"我们的方法相当独特,有可能成为石墨烯和类似二维材料的一种有用的补充表征技术。...PC版:https://www.cnbeta.com.tw/articles/soft/1374327.htm手机版:https://m.cnbeta.com.tw/view/1374327.htm

封面图片

研究人员发现可使用激光隔空篡改纸质二维码等

研究人员发现可使用激光隔空篡改纸质二维码等现在,打印好的纸质二维码,可能也不安全了。最近,日本东海大学的研究人员开发出一种远距离、超隐蔽的二维码篡改方式。研究人员利用肉眼不可见的激光照射色块,就能决定摄像头的识别结果。经过照射之后,虽然肉眼看不出区别,但在摄像头的视角下原本是黑色的模块就会被识别为白色。在暗处,波长超过600纳米的光几乎无法被人眼识别,即使在亮处,也无法看到超过700纳米的光。而摄像头在700纳米的波长下依然有50%以上的捕捉率。本实验中,研究人员使用了10毫瓦的635纳米(红色可见光)和785纳米(红外线)的光分别在不同距离对二维码进行了照射。其中0~50米为真实距离,100米距离则通过镜面反射实现。——

封面图片

开创性的实验方法揭开了二维材料中自旋结构的秘密

开创性的实验方法揭开了二维材料中自旋结构的秘密研究人员发现了一种新的实验技术来研究二维量子材料中的电子自旋特性,克服了一个长期的挑战,并有可能使基于这些材料的先进计算和通信技术得到发展。资料来源:李佳/布朗大学阻碍科学家们测量电子自旋的典型方法--一种使物理宇宙中的一切具有结构的基本行为--通常在二维材料中不起作用。这使得充分了解这些材料并推动基于它们的技术进步变得异常困难。但是由布朗大学研究人员领导的一个科学家团队认为他们现在有办法解决这一长期的挑战。他们在5月11日发表在《自然-物理》杂志上的一项新研究中描述了他们的解决方案。在这项研究中,该团队--其中还包括来自桑迪亚国家实验室综合纳米技术中心和因斯布鲁克大学的科学家--描述了他们认为是第一次显示二维材料中旋转的电子与来自微波辐射的光子之间直接互动的测量。据研究人员称,电子对微波光子的吸收被称为耦合,它建立了一种新的实验技术,用于直接研究电子在这些二维量子材料中如何旋转的特性--这种技术可以作为开发基于这些材料的计算和通信技术的基础。"自旋结构是量子现象中最重要的部分,但我们从来没有真正在这些二维材料中直接探测过它,"布朗大学物理学助理教授、该研究的资深作者李佳说。"这一挑战使我们在过去20年里无法从理论上研究这些迷人的材料中的自旋。我们现在可以用这种方法来研究很多以前无法研究的不同系统。"研究人员在一种相对较新的二维材料上进行了测量,这种材料被称为"魔角"扭曲双层石墨烯。这种基于石墨烯的材料是在两片超薄的碳层堆叠并扭曲到恰到好处的角度时产生的,将新的双层结构转化为一种超导体,使电力流动没有阻力或能量浪费。2018年刚刚发现,研究人员专注于这种材料,因为围绕它的潜力和神秘感。"2018年提出的很多重大问题仍未得到解答,"领导这项工作的布朗大学Li实验室的研究生ErinMorissette说。物理学家通常使用核磁共振或NMR来测量电子的自旋。他们通过使用微波辐射激发样品材料的核磁特性,然后读取这种辐射引起的不同特征来测量自旋。二维材料所面临的挑战是,电子对微波激发的磁性特征太小,无法检测。该研究小组决定随机应变。他们没有直接检测电子的磁化,而是使用布朗大学分子和纳米创新研究所制造的设备测量电子电阻的细微变化,这些变化是由辐射的磁化变化引起的。电子电流流动的这些细微变化使研究人员能够使用该设备检测电子正在吸收微波辐射的照片。研究人员能够从实验中观察到新的信息。例如,研究小组注意到,光子和电子之间的相互作用使该系统某些部分的电子表现得像在反铁磁系统中一样--这意味着一些原子的磁性被一组以相反方向排列的磁性原子所抵消了。研究二维材料中自旋的新方法和目前的发现不会适用于今天的技术,但研究小组看到了该方法在未来可能导致的潜在应用。他们计划继续将他们的方法应用于扭曲的双层石墨烯,但也将其扩展到其他二维材料。Morissette说:"这是一个真正多样化的工具集,我们可以用它来获取这些强相关系统中电子秩序的一个重要部分,并在总体上理解电子在二维材料中的行为。"...PC版:https://www.cnbeta.com.tw/articles/soft/1360033.htm手机版:https://m.cnbeta.com.tw/view/1360033.htm

封面图片

超越石墨烯:二维材料的新世界正在开启

超越石墨烯:二维材料的新世界正在开启厚度只有几个原子的材料薄得惊人,具有独特的性能,因此在储能、催化和水净化方面具有吸引力。瑞典林雪平大学的研究人员现已开发出一种方法,可以合成数百种新型二维材料。他们的研究发表在《科学》杂志上。自石墨烯发现以来,极薄材料(即所谓的二维材料)的研究领域呈指数级增长。究其原因,二维材料相对于其体积或重量而言具有较大的表面积。这就产生了一系列物理现象和独特性能,如良好的导电性、高强度或耐热性,使得二维材料在基础研究和应用领域都备受关注。林雪平大学副教授约纳斯-比约克。图片来源:ThorBalkhed"在一层只有一毫米薄的薄膜中,可以有数百万层材料。"林雪平大学材料物理学教授约翰娜-罗森(JohannaRosén)说:"层与层之间可以发生大量化学反应,因此二维材料可用于储能或生成燃料等。"最大的二维材料家族被称为MXenes。MXenes由一种称为MAX相的三维母材料生成。它由三种不同的元素组成:M是过渡金属,A是(A族)元素,X是碳或氮。通过酸性物质去除A元素(剥离),就形成了二维材料。到目前为止,MXenes是唯一以这种方式制造出来的材料系列。林雪平的研究人员提出了一种理论方法,用于预测可能适合转化为二维材料的其他三维材料。他们还证明了该理论模型与现实是一致的。周杰,林雪平大学助理教授。图片来源:OlovPlanthaber研究人员采用了三步法。第一步,他们开发了一个理论模型来预测哪些母体材料适用。利用国家超级计算机中心的大规模计算,研究人员从一个数据库和66,643种材料中筛选出119种有前途的3D材料。下一步是尝试在实验室中制造这种材料。"在119种可能的材料中,我们研究了哪些材料具有所需的化学稳定性,哪些材料是最佳候选材料。首先,我们必须合成三维材料,这本身就是一项挑战。最后,我们得到了一个高质量的样品,可以使用氢氟酸剥离和蚀刻掉特定的原子层,"物理、化学和生物系助理教授周杰说。研究人员从母体材料YRu2Si2中去除钇(Y),从而形成了二维Ru2SixOy。JohannaRosén,林雪平大学材料物理学教授。图片来源:OlovPlanthaber但要在实验室中确认成功,还必须进行验证,这就是第三步。研究人员使用了林雪平大学的扫描透射电子显微镜Arwen。它可以检查材料及其原子级结构。这种显微镜中还可以利用光谱学研究材料是由哪些原子组成的。"我们能够确认我们的理论模型运行良好,所产生的材料由正确的原子组成。剥离后,材料的图像就像一本书的书页。"材料设计部副教授乔纳斯-比约克(JonasBjörk)说:"理论能够付诸实践,从而将化学剥离的概念扩展到更多的材料家族,而不仅仅是MXenes。"研究人员的发现意味着更多具有独特性能的二维材料指日可待。这些材料反过来又能为大量技术应用奠定基础。下一步,研究人员将探索更多潜在的前驱体材料,并扩大实验规模。JohannaRosén相信,未来的应用几乎是无穷无尽的。"总的来说,二维材料在大量应用中显示出巨大的潜力。例如,可以想象捕获二氧化碳或净化水。"JohannaRosén说:"现在要做的是扩大合成规模,并以可持续的方式进行合成。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429019.htm手机版:https://m.cnbeta.com.tw/view/1429019.htm

封面图片

研究人员通过观察"魔角"石墨烯的自旋结构解决了长期存在的障碍

研究人员通过观察"魔角"石墨烯的自旋结构解决了长期存在的障碍然而,一个主要的障碍是科学家们用来测量电子自旋的标准方法--一种赋予宇宙万物结构的基本行为--通常在二维材料中不起作用。这使得全面了解这种材料并在此基础上推动技术进步变得异常困难。但布朗大学研究人员领导的科学家团队相信,他们现在有办法解决这一长期存在的难题。他们在发表于《自然-物理》(NaturePhysics)的一项新研究中描述了他们的解决方案。在这项研究中,该研究小组--其中还包括来自桑迪亚国家实验室集成纳米技术中心和因斯布鲁克大学的科学家描述了他们认为是首次显示二维材料中旋转的电子与来自微波辐射的光子之间直接相互作用的测量结果。研究人员称,电子吸收微波光子被称为耦合,它为直接研究二维量子材料中电子如何自旋的特性提供了一种新的实验技术--这种技术可以作为开发基于这些材料的计算和通信技术的基础。"自旋结构是量子现象中最重要的部分,但我们从未真正在这些二维材料中对其进行过直接探测,"布朗大学物理学助理教授、该研究的资深作者李嘉说。布朗大学物理学助理教授、该研究的资深作者李嘉说:"过去二十年来,这一挑战阻碍了我们从理论上研究这些迷人材料中的自旋。我们现在可以用这种方法来研究许多我们以前无法研究的不同系统。"研究人员在一种名为"魔角"扭曲双层石墨烯的相对较新的二维材料上进行了测量。这种基于石墨烯的材料是由两片超薄的碳层堆叠而成,并以恰到好处的角度扭曲,从而将新的双层结构转化为超导体,使电流流动时没有阻力或能量浪费。这种材料在2018年刚刚被发现,研究人员之所以关注它,是因为它的潜力和神秘性。"2018年提出的许多重大问题仍有待解答,"布朗大学李的实验室里领导这项工作的研究生艾琳-莫里塞特(ErinMorissette)说。物理学家通常使用核磁共振或NMR来测量电子自旋。他们使用微波辐射激发样品材料的核磁特性,然后读取辐射引起的不同信号来测量自旋。二维材料所面临的挑战是,电子在微波激励下产生的磁信号太小,无法检测。研究小组决定随机应变。他们没有直接检测电子的磁化,而是利用布朗大学分子和纳米创新研究所制造的设备测量了电子电阻的微妙变化,这些变化是由辐射引起的磁化变化造成的。电子电流流的这些微小变化使研究人员能够利用该装置检测到电子正在吸收微波辐射的照片。研究人员能够从实验中观察到新的信息。例如,研究小组注意到,光子和电子之间的相互作用使得系统某些部分的电子表现出反铁磁系统的行为--这意味着一些原子的磁性被一组反方向排列的磁性原子抵消了。这种研究二维材料自旋的新方法和目前的发现并不适用于当今的技术,但研究小组看到了这种方法在未来可能带来的潜在应用。他们计划继续将他们的方法应用于扭曲双层石墨烯,并将其扩展到其他二维材料。莫里塞特说:"这是一个非常多样化的工具集,我们可以用它来获取这些强相关系统中电子秩序的一个重要部分,并从总体上理解电子在二维材料中的行为方式。"...PC版:https://www.cnbeta.com.tw/articles/soft/1371469.htm手机版:https://m.cnbeta.com.tw/view/1371469.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人