世界上最快的生物运动背后的巨大蛋白质被发现

世界上最快的生物运动背后的巨大蛋白质被发现这项研究对于理解超快细胞收缩的分子机制具有重要意义,并为设计和建造超快收缩的微机械提供了蓝图。在他1676年10月9日给皇家学会的著名信件中,AntonievanLeeuwenhoek描述了一种单细胞真核生物(Vorticella)及其迷人的超快细胞收缩,这是第一组发现。这种由Ca2+依赖性机制引发的超快细胞收缩不同于在肌动蛋白-肌球蛋白和dynein/kinesin-tubulin系统中发现的三磷酸腺苷(ATP)-依赖性机制。Spirostomum(大旋口虫)是一属毫米级的单细胞原生动物,以其难以置信的快速运动而闻名,如Vorticella(钟形虫)。由于它们的超快速收缩,它们能够进行生物界中一些最快的运动。然而,尽管有很多研究,这种超快细胞收缩背后的分子机制长期以来一直是个谜。最近,由中国科学院水生所苗圩教授领导的研究小组通过描述Spirostomum的超快收缩背后的分子基础揭开了这个谜团。该团队的研究发表在《科学进展》上。在这项研究中,研究人员使用他们之前建立的基因组组装管道获得了Spirostomum的高质量基因组。他们发现,收缩结构是一个网状的收缩纤维系统,由两个巨型蛋白和两个Ca2+结合蛋白组成。利用RNAi,他们验证了巨型蛋白的功能。超分辨率成像显示,网状收缩纤维系统与微管细胞骨架、线粒体和内质网(ER)耦合,很符合斯皮罗斯托姆细胞重复性超速收缩和延伸的生物和物理需要。"实际上,我们的研究为研究非模式原生动物提供了一个有价值的参考,涵盖了从基因组到分子研究的各个方面,"MIAO教授说。这项研究对于理解超快细胞收缩的分子机制具有高度意义,并为超快收缩微机械的生物模仿、设计和建造提供了良好的蓝图。...PC版:https://www.cnbeta.com.tw/articles/soft/1357633.htm手机版:https://m.cnbeta.com.tw/view/1357633.htm

相关推荐

封面图片

PicoRuler:基于蛋白质的分子标尺革新细胞成像技术

PicoRuler:基于蛋白质的分子标尺革新细胞成像技术PicoRuler:基于蛋白质的分子标尺可以在现实条件下测试最新超分辨率显微镜方法在亚10纳米范围内对生物分子的光学分辨率。图片来源:GertiBeliu,DALL-E3/维尔茨堡大学由德国巴伐利亚州维尔茨堡朱利叶斯-马克西米利安大学(JMU)鲁道夫-维尔乔中心(RudolfVirchowCentre-CenterforIntegrativeandTranslationalBioimaging)的GertiBeliu博士和MarkusSauer教授领导的科学家团队现在提供了一个转折点。他们在《先进材料》杂志上发表了新型生物兼容分子尺PicoRulers(基于蛋白质的成像校准光学尺)。研究小组利用基因代码扩展和点击化学,成功构建了这些定制的分子尺。它们可在荧光显微镜中用作精确的生物分子参考结构。PicoRulers基于由三部分组成的蛋白质PCNA(增殖细胞核抗原),它在DNA复制和修复中发挥着核心作用。通过在精确定位的位置上引入非天然氨基酸,这种蛋白质已被改性,使荧光染料或其他分子能够以最小的连接误差特异性地点击到它上面。这样,研究人员就能在精确定义的细胞生物分子上以前所未有的精度测试最新超分辨率显微镜方法的分辨率。MarkusSauer热情洋溢地表示:"能够在亚10纳米水平上解析真实的生物结构,标志着生物成像技术进入了一个新时代。与以前使用的人造大分子相比,我们的PicoRuler不仅具有生物兼容性的特点。它们还能在现实条件下实现无与伦比的测试分辨率精度。""这项技术的应用范围远远超出了传统显微镜的界限。"GertiBeliu解释说:"我们的PicoRulers不仅是更精确测量的工具,还为更深入、更详细地研究细胞内发生的复杂过程打开了大门。"从长远来看,PicoRulers的进一步发展可能会改变具有分子分辨率的生物和医学成像。PicoRuler首次实现了在生物样本上验证和提高新的超分辨率显微镜方法的分辨率潜力。这使它们成为未来阐明细胞中生物分子的分子组织和相互作用的宝贵工具。...PC版:https://www.cnbeta.com.tw/articles/soft/1401693.htm手机版:https://m.cnbeta.com.tw/view/1401693.htm

封面图片

新研究发现与免疫系统疾病有关的关键蛋白质

新研究发现与免疫系统疾病有关的关键蛋白质T细胞善于识别引发免疫反应的外来分子(抗原),并做出有针对性的反应来消灭细菌和病毒等病原体。这项发表在《免疫学杂志》上的研究调查了STAP-1如何影响免疫反应。研究人员发现,STAP-1是一种中间体,能促进细胞内不同蛋白质之间的交流,并使信号从一个分子传递到另一个分子。领导这项研究的北海道大学教授TadashiMatsuda说:"我们的发现为T细胞活化和免疫失调的分子机制提供了宝贵的见解。我们发现,STAP-1在调节免疫反应,尤其是在T细胞的活化和功能方面发挥着重要作用。"STAP-1基因敲除(KO)小鼠脊髓的炎症反应不如野生型(WT)小鼠严重(上图)。与此同时,STAP-1KO小鼠的脊髓与WT小鼠的脊髓相比,脱髓鞘现象(即神经周围的髓鞘脱落)较少(下图)。图片来源:KotaKagohashi等人《免疫学杂志》。2024年2月5日T细胞需要两个信号才能被激活并启动免疫反应。第一个信号涉及识别由其他细胞(称为抗原递呈细胞)递呈的抗原。抗原由T细胞受体识别,T细胞受体是一种存在于T细胞表面的蛋白质复合物。第二个信号由抗原递呈细胞上的分子提供的协同刺激信号组成。研究人员发现,STAP-1能帮助T细胞交流和响应信号,尤其是由T细胞受体触发的信号。缺乏STAP-1的T细胞难以正常接收和传递信号,从而减少了某些称为细胞因子的免疫分子的产生。细胞因子可导致炎症或自身免疫性疾病,在这种疾病中,免疫系统会错误地攻击健康的组织和器官。研究小组还发现,STAP-1与其他参与T细胞信号传导的蛋白质相互作用,形成了一个复杂的网络,有助于调节T细胞的活性。他们观察到,在多发性硬化症和哮喘等疾病模型中,缺乏STAP-1的细胞炎症程度较低,这表明STAP-1可能参与了这些疾病的发展。这些发现标志着我们在了解免疫系统调控方面迈出了重要一步。未来的研究可以在这项工作的基础上,探索STAP-1作为治疗靶点治疗免疫相关疾病的潜力。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423355.htm手机版:https://m.cnbeta.com.tw/view/1423355.htm

封面图片

研究发现特定蛋白质GLI1如何导致致命的癌症

研究发现特定蛋白质GLI1如何导致致命的癌症加州大学欧文分校的研究人员对某种蛋白质如何在肿瘤细胞中被激活的发现可能会带来对一些最致命的癌症类型的更有效的诊断和治疗。这一发现由生物科学学院的科学家领导,可以带来对特别危险的黑色素瘤和胰腺癌,以及最常见的儿童脑癌和成人皮肤癌的治疗方案。该研究发表在《生命科学联盟》杂志上。GLI1蛋白是该发现的主角,它对细胞发育至关重要,但也与一些癌症有关。刺猬信号通路(HedgehogSignalingPathway),也被称为HH,通常可以激活GLI1。然而,科学家们近十年来已经知道,HH和丝裂原活化蛋白激酶途径之间的串扰或互动,在癌症形成中具有一定的作用。主要作者、UCI发育与细胞生物学系的项目科学家A.JaneBardwell说:"在某些情况下,一种途径的蛋白质可以开启另一种途径的蛋白质。这是一个复杂的系统。我们想了解导致GLI1被MAPK途径中的蛋白质激活的分子机制"。GLI1通常与一种被称为SUFU的蛋白质形成一种强有力的结合。这种蛋白质会抑制GLI1,防止它穿透细胞核并开启基因。研究人员检查了GLI1蛋白上可能被磷酸化或有磷酸基团转移到它上面的七个位点。发展和细胞生物学教授LeeBardwell说:"我们确定了三个可以被磷酸化的位置,它们参与了削弱GLI1和SUFU之间的结合,"他的实验室负责该项目。"这个过程激活了GLI1,使它能够进入细胞核,在那里它可以引起不受控制的生长,导致癌症。"他指出,所有三个位点的磷酸化导致GLI1逃离SUFU的水平明显高于仅仅其中一个或甚至两个位点接受磷酸化基团的情况。这一发现是朝着更有效和个性化的癌症治疗迈出的重要一步。"Bardwell说:"如果我们能够准确地了解某种癌症或特定肿瘤的情况,就有可能开发出一种针对特定肿瘤或个别病人的药物。这将使我们能够在没有基本化疗毒性的情况下治疗这些疾病。此外,许多来自同一癌症的肿瘤在个体之间有不同的突变。最终,筛选肿瘤以开发出适合每个人的最佳方法也许是可行的。"了解更多:https://doi.org/10.26508/lsa.202101353...PC版:https://www.cnbeta.com/articles/soft/1310499.htm手机版:https://m.cnbeta.com/view/1310499.htm

封面图片

科学家用新的无细胞蛋白质结晶方法推进结构生物学的发展

科学家用新的无细胞蛋白质结晶方法推进结构生物学的发展东京理工大学开发了一种新的无细胞蛋白质结晶(CFPC)方法,包括直接的蛋白质结晶,是结构生物学领域的一个重大进步。这项技术将使我们能够分析用传统方法无法研究的不稳定的蛋白质。分析这些将增加我们对细胞过程和功能的了解。PC版:https://www.cnbeta.com/articles/soft/1323455.htm手机版:https://m.cnbeta.com/view/1323455.htm

封面图片

揭开细胞动力源的秘密:科学家们揭开了线粒体的蛋白质图谱

揭开细胞动力源的秘密:科学家们揭开了线粒体的蛋白质图谱线粒体是细胞的"动力室",在生物体的能量生产中发挥着关键作用,并参与各种代谢和信号过程。来自波恩大学医院和弗莱堡大学的研究人员现在已经对线粒体内的蛋白质组织有了系统的了解。线粒体的蛋白质图谱为进一步探索这些细胞动力源的功能奠定了重要基础,并对疾病的理解产生了影响。这项新研究最近发表在著名的《自然》杂志上。线粒体是细胞的重要组成部分,被一层双膜所包围,将它们与细胞的其他部分分开。它们产生维持这些活动所需的大部分能量。除了能量生产,线粒体在新陈代谢和信号传递中发挥着关键作用,作为炎症过程和程序性细胞死亡的表面。从线粒体进入门移除被捕蛋白质的质量控制机制的模型。资料来源:Schulte等人,2023年《自然》杂志线粒体的缺陷导致了许多疾病,尤其是神经系统的疾病。因此,对线粒体过程的分子理解对基础医学研究具有最重要的意义。细胞中的分子工作者通常是蛋白质。线粒体可以包含大约1000个或更多不同的蛋白质。为了执行功能,这些分子中的几个经常一起工作,形成一个蛋白质机器,也称为蛋白质复合物。蛋白质还在分子过程的执行和调节中相互作用。然而,人们对线粒体蛋白质在这种复合体中的组织结构知之甚少。英国广播公司的托马斯-贝克尔教授和法比安-登-布拉夫博士的研究小组与弗莱堡大学的贝恩德-法克勒教授、乌韦-舒尔特博士和尼古拉斯-普凡纳教授的研究小组一起,创建了一个蛋白质复合物中蛋白质组织的高分辨率图像,称为MitCOM。这涉及一种被称为复合体分析的特殊方法,以前所未有的分辨率记录单个蛋白质的指纹。MitCOM揭示了来自面包酵母的90%以上的线粒体蛋白在蛋白质复合物中的组织。这使得新的蛋白质-蛋白质相互作用和蛋白质复合体的鉴定成为可能--这对进一步的研究非常重要。UKB的研究人员与合作研究中心1218"线粒体对细胞功能的调节"项目合作,展示了这一数据集如何被用来阐明新的过程。线粒体从细胞的液体部分(称为细胞膜)输入99%的蛋白质。在这个过程中,一种被称为TOM复合体的机制使这些蛋白质通过膜被吸收到线粒体中。然而,当蛋白质在运输过程中被卡住时,它们是如何从TOM复合体中移除的,这一点在很大程度上还不清楚。为了阐明这一点,Becker教授和denBrave博士领导的团队使用了MitCOM数据集的信息。结果表明,非输入的蛋白质被专门标记为细胞降解。博士生ArushiGupta的研究进一步揭示了这些被标记的蛋白质随后被定向降解的途径。了解这些过程很重要,因为蛋白质输入的缺陷可能导致细胞损伤和神经系统疾病。"我们研究中的例子证明了MitCOM数据集在阐明新机制和途径方面的巨大潜力。因此,这个蛋白质地图代表了进一步研究的重要信息来源,它将帮助我们了解细胞动力源的功能和起源,"UKB生物化学和分子生物学研究所所长贝克尔教授说。...PC版:https://www.cnbeta.com.tw/articles/soft/1348957.htm手机版:https://m.cnbeta.com.tw/view/1348957.htm

封面图片

科学家解码生物界最快的细胞运动之一 - 太阳虫的指状臂

科学家解码生物界最快的细胞运动之一-太阳虫的指状臂螺旋藻类的太阳虫在遇到外部刺激后几毫秒内就会撤回其轴突。来自日本冈山大学的研究人员报告说,微管动力学是这种瞬间缩短手臂的关键。资料来源:冈山大学MotonoriAndo为此,一个研究小组,包括日本冈山大学的安藤元典教授、池田理沙博士(均来自细胞生理学实验室)和滨田真由子副教授(来自牛岛海洋研究所),探索了涉及生物世界中最快细胞运动之一的机制。那么,这一切从何而来?安藤教授分享了他们研究背后的动机,他说:"最近,在冈山县的各种水体中发现了各种各样的太阳虫,这清楚地表明,有几种太阳虫居住在同一环境中。我们正试图揭开围绕这些原生动物的神秘面纱,逐步扩大我们的知识视野"。作者通过免疫标记管蛋白并观察其在轴节收缩前后的运动开始了他们的调查。他们发现,在缩短之前,管蛋白沿着轴突的长度系统地排列,但在轴突退出后,这些管蛋白迅速地在细胞表面聚集。这使他们相信,在轴突快速撤离期间,微管瞬间分解成了管蛋白。然而,微管的降解通常不是一个快速的现象;它的进展相当缓慢。那么,R.contractilis如何能如此迅速地实现这一变化呢?研究人员假设,如果微管在多个部位同时分裂,为了验证他们的假设,作者开始寻找参与收缩菌瞬间裂解微管的蛋白质和基因。他们的发现最近发表在《真核微生物学杂志》上。研究人员进行了从头开始的转录组测序(分析细胞中某一特定时间表达的基因),并在R.contractilis中确定了近32000个基因。这个基因组与原生动物(单细胞生物)中的基因组最为相似,其次是后生动物(具有良好分化细胞的多细胞生物;这包括人类和其他动物)。对所获得的基因组进行同源性和系统性分析,发现有几个基因(和它们相应的蛋白质)参与了微管的行动。其中,最重要的是Kataninp60、驱动蛋白和钙信号蛋白。Kataninp60参与控制轴臂的长度。发现了几个重复的驱动蛋白基因。在已鉴定的驱动蛋白中,发现驱动蛋白-13,一种主要的微管不稳定蛋白,在轴突的快速收缩中起重要作用。钙信号基因调节钙离子从其周围进入细胞以及诱导轴突的退出。研究人员还注意到缺乏与鞭毛形成和运动有关的基因,表明R.contractilis的轴突不是从鞭毛进化而来的。尽管许多基因仍未分类,但新建立的基因组将作为未来研究的参考,旨在了解R.contractilis的轴突运动。螺旋藻类的轴突可以作为一种敏感的传感器。它们可以检测到其环境中的微小变化,例如重金属离子和抗癌药物的存在。在讨论他们对未来的展望时,安藤教授分享道:"我们相信,螺旋藻的轴突反应可以作为一个指标,用于开发环境和自来水污染的临时检测和监测装置。它还可以作为一种新型的生物测定系统,用于新型抗癌药物的初筛。未来,我们计划继续作为一个团队进行合作,加强对这些生物的基础和应用研究"。螺旋藻类再次证明,一个单细胞具有改变世界的巨大潜力。我们祝愿作者成功地将他们的愿景变为现实!"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343991.htm手机版:https://m.cnbeta.com.tw/view/1343991.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人