量子计算第二里程碑,谷歌实现量子纠错突破,150多位作者成果登Nature-IT之家https://www.ithome.com/0/675/815.htm

None

相关推荐

封面图片

哈佛大学团队打造量子计算新平台 实现重大纠错里程碑

哈佛大学团队打造量子计算新平台实现重大纠错里程碑哈佛大学团队开发的减少误差的方法解决了扩大技术规模的一个重大障碍。量子计算技术具有前所未有的速度和效率潜力,其能力甚至大大超过了目前最先进的超级计算机。然而,这项创新技术尚未广泛推广或商业化,主要原因是其在纠错方面存在固有的局限性。量子计算机与经典计算机不同,无法通过反复复制编码数据来纠正错误。科学家们必须另辟蹊径。现在,《自然》杂志上的一篇新论文展示了哈佛大学量子计算平台解决量子纠错这一长期问题的潜力。领导哈佛团队的是量子光学专家米哈伊尔-卢金(MikhailLukin),他是约书亚和贝丝-弗里德曼大学物理学教授,也是哈佛量子计划的联合主任。《自然》杂志报道的这项工作由哈佛大学、麻省理工学院和总部位于波士顿的QuEraComputing公司合作完成。GeorgeVasmerLeverett物理教授MarkusGreiner的研究小组也参与了这项工作。经过几年的努力,哈佛平台建立在一个非常冷的、被激光捕获的铷原子阵列上。每个原子就像一个比特(量子世界称之为"量子比特"),可以执行极快的计算。研究小组的主要创新是配置他们的"中性原子阵列",使其能够通过移动和连接原子(物理学术语称之为"纠缠"),在计算过程中动态改变其布局。纠缠原子对的运算称为双量子比特逻辑门,是计算能力的单位。在量子计算机上运行一个复杂的算法需要许多门。然而,这些门操作是出了名的容易出错,错误的积累会使算法失去作用。在这篇新论文中,研究小组报告说,其双量子比特纠缠门的性能近乎完美,错误率极低。他们首次展示了以低于0.5%的错误率纠缠原子的能力。就运行质量而言,这使他们的技术性能与超导量子比特和困离子量子比特等其他领先类型的量子计算平台不相上下。优势与未来潜力然而,哈佛大学的方法与这些竞争对手相比具有很大的优势,因为它具有大系统规模、高效的量子比特控制以及动态重新配置原子布局的能力。第一作者西蒙-埃弗里德(SimonEvered)是卢金研究小组中哈佛大学格里芬艺术与科学研究生院的一名学生。他介绍说:"我们现在的误差率已经足够低了,如果我们把原子组合成逻辑量子比特(信息在组成原子之间非本地存储),这些经过量子误差校正的逻辑量子比特的误差可能比单个原子还要低。"哈佛大学团队的研究进展与哈佛大学前研究生杰夫-汤普森(JeffThompson)(现就读于普林斯顿大学)和哈佛大学前博士后曼努埃尔-恩德雷斯(ManuelEndres)(现就读于加州理工学院)领导的其他创新成果在同一期《自然》杂志上进行了报道。综合来看,这些进展为量子纠错算法和大规模量子计算奠定了基础。所有这些都意味着,中性原子阵列上的量子计算正展现出其广阔的前景。卢金说:"这些贡献为可扩展量子计算的特殊机遇打开了大门,也为整个领域的未来带来了真正激动人心的时刻。"参考文献SimonJ.Evered、DolevBluvstein、MarcinKalinowski、SepehrEbadi、TomManovitz、HengyunZhou、SophieH.Li、AlexandraA.Geim、ToutT.Wang、NishadMaskara、HarryLevine、GiuliaSemeghini、MarkusGreiner、VladanVuletić和MikhailD.Lukin的"中性原子量子计算机上的高保真并行纠缠门",2023年10月11日,《自然》。DOI:10.1038/s41586-023-06481-y编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404903.htm手机版:https://m.cnbeta.com.tw/view/1404903.htm

封面图片

英特尔公布量子计算机芯片量产的一大重要里程碑成果

英特尔公布量子计算机芯片量产的一大重要里程碑成果英特尔旗下两个主要研究机构英特尔实验室(IntelLabs)和基础材料研究所(ComponentsResearch)近日宣布,他们在大规模生产量子计算处理器方面取得了重大进展。PC版:https://www.cnbeta.com/articles/soft/1324189.htm手机版:https://m.cnbeta.com/view/1324189.htm

封面图片

量子通信网络里程碑 中国科大实现模式匹配量子密钥分发

量子通信网络里程碑中国科大实现模式匹配量子密钥分发据了解,量子密钥分发(QKD)基于量子力学基本原理,可以实现理论上无条件安全的保密通信,因此在近几十年来一直是学术界的研究热点。模式匹配量子密钥分发协议(MP-QKD)是由清华大学马雄峰研究组于2022年提出的一种新型测量设备无关量子密钥分发协议,相较于原始的测量设备无关协议(MDI-QKD),MP-QKD可以将更多的探测事件用于成码,可以很大程度提高成码率。同时,相较于双场量子密钥分发协议(TF-QKD)和相位匹配协议(PM-QKD),MP-QKD无需复杂的激光器锁频锁相技术,节省成本且降低了实际应用难度,同时对环境噪声有更好的抗干扰能力。模式匹配量子密钥分发协议示意图潘建伟、陈腾云研究组基于清华大学马雄峰研究组提出的模式匹配量子密钥分发(MP-QKD)协议,利用极大似然估计的数据后处理方法精确地估算出两个独立激光器的频率差用于参数估计,并结合中科院上海微系统所尤立星团队研制的高效率单光子探测器,实现了实验室标准光纤百公里级、两百公里级、三百公里级以及超低损光纤四百公里级的安全成码,相较于之前的原始MDI实验,成码率有明显提升,并且在三百公里和四百公里距离上较之前实验成码率提升了3个数量级。模式匹配协议的成码率比较图上述研究成果表明,MP-QKD在不需激光器锁频锁相的条件下可以实现远距离安全成码且在城域距离有较高成码率,极大地降低了协议实现难度,对未来量子通信网络构建具有重要意义。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.030801...PC版:https://www.cnbeta.com.tw/articles/soft/1342729.htm手机版:https://m.cnbeta.com.tw/view/1342729.htm

封面图片

里程碑书系

名称:里程碑书系描述:各学科史上的250个里程碑事件!7门学科的简史!全球畅销百万册!链接:https://www.aliyundrive.com/s/bmv6cxkd2h8大小:100MB标签:#book#电子书#套装来自:雷锋版权:频道:@shareAliyun群组:@aliyundriveShare投稿:@aliyun_share_bot

封面图片

量子互联网的重要里程碑: 新实验实现在技术之间"翻译"量子信息

量子互联网的重要里程碑:新实验实现在技术之间"翻译"量子信息这代表了一种将量子信息从量子计算机使用的格式转化为量子通信所需格式的创新方法。一个铌超导空腔。孔洞通向隧道,隧道相交以捕获光和原子。光子--光的粒子--对量子信息技术至关重要,但不同的技术以不同的频率使用它们。例如,一些最常见的量子计算技术是基于超导量子比特,如科技巨头Google和IBM使用的那些;这些量子比特将量子信息存储在以微波频率移动的光子中。但是,如果你想建立一个量子网络,或连接量子计算机,你就不能四处发送微波光子,因为它们对量子信息的控制力太弱,无法在旅途中生存。"我们用于经典通信的很多技术--手机、Wi-Fi、GPS以及诸如此类的东西--都使用微波频率的光,"芝加哥大学詹姆斯-弗兰克研究所的博士后、该论文的第一作者AishwaryaKumar说。"但你不能这样做量子通信,因为你需要的量子信息是在一个单一的光子中。而在微波频率下,这种信息会被埋没在热噪声中。"铷的电子能级示意图。其中两个能级间隙分别与光学光子和微波光子的频率相符。激光被用来迫使电子跳到更高的层次或降到更低的层次。解决方案是将量子信息转移到更高频率的光子上,称为光学光子,它对环境噪声的抵抗力要强得多。但信息不能直接从光子转移到光子;相反,我们需要中间物质。一些实验为此目的设计了固态设备,但库马尔的实验瞄准了更基本的东西:原子。原子中的电子只允许拥有某些特定的能量,称为能级。如果一个电子处于一个较低的能级,它可以被激发到一个较高的能级,方法是用一个能量正好与较高和较低能级之间的差异相匹配的光子击中它。同样地,当一个电子被迫降到一个较低的能级时,原子就会发射出一个能量与能级之间的能量差相匹配的光子。铷原子恰好有两个空隙,库马尔的技术利用了这两个空隙:一个正好等于微波光子的能量,另一个正好等于光子的能量。通过使用激光使原子的电子能量上下移动,该技术允许原子吸收带有量子信息的微波光子,然后发射带有该量子信息的光学光子。这种不同模式的量子信息之间的转换被称为"转导"。有效地将原子用于这一目的是由于科学家们在操纵这种小物体方面取得的重大进展而成为可能。库马尔说:"在过去的20或30年里,我们作为一个群体已经建立了卓越的技术,使我们能够控制关于原子的一切,所以实验是非常可控和有效的。"他说,他们成功的另一个秘密是该领域在腔体量子电动力学方面的进展,在那里,一个光子被困于一个超导反射室。迫使光子在一个封闭的空间里反弹,超导腔加强了光子和放在里面的任何物质之间的相互作用。他们的腔体看起来不是很封闭,事实上,它更像一块瑞士奶酪。但看起来像洞的地方实际上是以非常特殊的几何形状相交的隧道,因此光子或原子可以被困在一个交叉点上。这是一个聪明的设计,也允许研究人员进入腔室,以便他们能够注入原子和光子。该技术可以双向工作:它可以将量子信息从微波光子转移到光学光子,反之亦然。因此,它可以在两个超导量子计算机之间的长距离连接的任何一侧,并作为量子互联网的基本构件。但库马尔认为,这项技术的应用可能比量子网络多得多。它的核心能力是强纠缠原子和光子--这是整个领域中许多不同的量子技术中必不可少的,也是困难的任务。他说:"我们真正感到兴奋的事情之一是这个平台能够产生真正有效的纠缠,纠缠是我们关心的几乎所有量子的核心,从计算到模拟到计量学和原子钟。我很高兴看到我们还能做什么。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352151.htm手机版:https://m.cnbeta.com.tw/view/1352151.htm

封面图片

《里程碑》 剧情

里程碑Lakshvir Saran / 苏文德·维奇

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人