南华早报 2022.9.14

核武器科学家、中国工程物理研究院院士彭先觉,在北京智库Techxcope于9月9日组织的在线会议上透露,中国政府已批准建设世界上最大的脉冲发电厂,计划到2028年产生#核聚变能源。彭院士透露,他们采用的方案是Z箍缩驱动聚变裂变混合堆(简称Z箍缩混合堆,英文Z-FFR)。Z箍缩驱动器预计将于2025年在成都建成,期望产生5000万安培的电力。所谓#Z箍缩,就是当电流流过柱形套筒导体时会产生角向磁场,该磁场作用于导体载流子,将产生指向柱中心轴的洛伦兹力,即压力,并导致自箍缩效应。研究人员将聚变堆的堆芯作为中子发生器。强电流的巨大磁压力,会驱动套筒等离子体高速向心内爆,点燃少量的氢同位素氘和氚。氘-氚核聚变反应产生的高能聚变中子,会在次临界包层中诱发裂变或嬗变反应,可用来发电、生产裂变燃料、或嬗变处置核废物。彭先觉团队估计,(跟里面的聚变堆产生的能量相比,)铀裂变将使该设施的总热量输出增加10到20倍,大大加快了聚变能源的应用,并使其在2035年前为商业发电做好准备。(根据、、、、、作了补充)#核聚变

相关推荐

封面图片

紧凑型聚变反应堆电子温度破纪录 远超 1000 万摄氏度

紧凑型聚变反应堆电子温度破纪录远超1000万摄氏度据最新一期《物理评论快报》报道,美国聚变能源技术公司ZapEnergy采用独特方法——剪切流Z箍缩,使核聚变温度远远超过了1000万摄氏度,而且该设备规模比其他聚变系统小得多。1000万摄氏度(大致相当于太阳核心温度)是核聚变温度的一个里程碑。自人类首次产生聚变反应以来的90年里,只有少数技术能使聚变等离子体电子温度达到1000万摄氏度。(科技日报)

封面图片

全球首个全高温超导核聚变实验装置来自两家中国公司

全球首个全高温超导核聚变实验装置来自两家中国公司磁约束聚变装置结构目前,可控核聚变的技术路线大体有三种,分别是重力场约束核聚变,激光惯性约束核聚变和磁约束核聚变。现今,磁约束核聚变研究中,托卡马克是已发展的最有希望利用热核聚变发电的技术方案,也被誉为“人造太阳”。托卡马克是一种利用磁约束来实现受控核聚变的环形容器,它的中央是一个环形的真空室,外面缠绕着线圈,在通电时内部会产生巨大的螺旋形磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。聚变发电全高温超导核聚变装置属于托卡马克技术路线,它的全部磁体系统,均采用高温超导材料建造,探索紧凑型高约束先进托卡马克运行模式。届时,将成为全球首台建成运行的全高温超导托卡马克装置,率先在完整装置层面验证全高温超导托卡马克技术路线的工程可行性。磁约束等离子体示意图氘氚聚变反应据上观新闻,还记得科幻电影《流浪地球2》中推动地球的行星发动机吗?它所利用的可控核聚变技术,正是科学家们多年来孜孜以求的。“如果实现可控核聚变,人类就可以拥有源源不断的清洁能源。”2月22日,中国工程院院士、全超导托卡马克核聚变实验装置牵头人李建刚在“墨子沙龙”作主旨演讲。图片来源:《流浪地球2》宣传海报随着人类对能源的需求越来越大,化石能源在未来两三百年可能面临消耗殆尽。当化石能源枯竭,未来如何维持?人类的终极能源是什么?“国际能源署曾组织全世界3000个科学家为之讨论了3年,我也是其中之一,最后大家得出一个结论:人类的终极能源=80%核聚变+20%可再生。”李建刚说。为何是核聚变而不是核裂变?核裂变的原料铀、钍、钚三类元素在自然界中含量极少,仅澳大利亚、哈萨克斯坦、加拿大、俄罗斯储量较多。核裂变时产生的各种射线会对人体产生伤害,放射性物质对周围环境也会造成污染。“星际旅行也要依靠核聚变才能实现。”李建刚介绍了核聚变的几大优势:首先,原料储量大。氘-氚聚变反应被认为相对容易实现,海水中蕴藏了约40万亿吨的氘,可用一百亿年。其次,氘-氚聚变反应的产物,无排放无污染,对环境是友好的。第三,核聚变反应具有“固有安全性”。“所谓固有安全性,意味着它什么时候都是安全的,就算发生事故,随时都可以停下来。”另据新华社,4月12日21时,中国有“人造太阳”之称的全超导托卡马克核聚变实验装置(east)创造新的世界纪录,成功实现稳态高约束模式等离子体运行403秒,对探索未来的聚变堆前沿物理问题,提升核聚变能源经济性、可行性,加快实现聚变发电具有重要意义。这是实验成功后的全超导托卡马克核聚变实验装置(east)控制大厅(4月12日摄)。新华社记者黄博涵摄“这次突破的主要意义在于‘高约束模式’。”中科院合肥物质科学研究院副院长、等离子体物理研究所所长宋云涛说,高约束模式下粒子的温度、密度都大幅度提升,“这为提升未来聚变电站的发电效率,降低成本奠定了坚实物理基础。”...PC版:https://www.cnbeta.com.tw/articles/soft/1369711.htm手机版:https://m.cnbeta.com.tw/view/1369711.htm

封面图片

世界最大核聚变发电装置 ITER 已经组装完成 但首次等离子体产生将推迟八年

世界最大核聚变发电装置ITER已经组装完成但首次等离子体产生将推迟八年由35个国家共同发起、旨在利用核聚变生产电力的国际热核聚变实验反应堆(ITER)项目宣布,其已经完成了核心的托卡马克装置组装,但其首次运行时间将推迟至少八年。ITER总干事PietroBarabaschi昨天概述了一个新的项目基线(),以取代2016年的版本。旧文件预计2025年将产出“第一团等离子体”,现在这个时间点已经推迟到了2033年。而原计划中2033年将开始进行的“氘氚聚变”实验则推迟到了2039年。与此同时,该项目将需要额外的54亿美元才能实现运行。——

封面图片

美国在核聚变反应中取得突破 成功实现净能量增益

美国在核聚变反应中取得突破成功实现净能量增益美国能源部宣布,辖下位于加州的国家实验室首次成功在核聚变反应中实现「净能量增益」,即核聚变所产生的能量,大于促发核聚变反应所需的能量。能源部长格兰霍姆表示,核聚变反应取得突破将为国防进步和清洁能源的未来铺平道路,又形容核聚变反应是21世纪最令人印象深刻的科学壮举之一,这项突破将会载入史册。科学家研究核聚变已超过50年,希望这种为太阳和恒星提供能量的过程,将来可望为地球提供大量无碳的能源,取代化石燃料和其他传统电力来源。2022-12-1403:38:33

封面图片

人类追求的终极能源 就藏在这种恐怖的武器里

人类追求的终极能源就藏在这种恐怖的武器里库兹卡的妈妈1960年联合国代表大会上,赫鲁晓夫向美国承诺,要让美国人看看“库兹卡的妈妈”,1961年10月30日,美国人看见了。这一天,美国地震调查局发现,在新地岛附近,发生了一场里氏5级左右的地震。但很快,美国的一架侦察机发现,这不是什么地震,正是“库兹卡的妈妈”。“库兹卡的妈妈”是苏联的俗语,就像中文的“给你点颜色看看”。这次,苏联人想让美国人见识的,是炸弹AN602,所以这枚炸弹在苏联就被戏称为“库兹卡的妈妈”,而在西方它被称作“沙皇炸弹”。图片来源:Wikipedia苏联原计划的“库兹卡的妈妈”是一枚1亿吨TNT当量的超级核弹。但当时1亿吨级核弹的设计方案里,可能会引起比较大范围的放射性沉降。另外,这个量级的炸弹在投弹后,飞行员不可能有足够的时间逃离爆炸现场,基本是有去无回。所以苏联方面修改了炸弹设计,把爆炸当量削减了一半。美国人见识到的,正是削弱版的“库兹卡的妈妈”。但即便是削弱版,它也是人类历史上威力最大的炸弹,它的爆炸当量是5000万吨,是“小男孩”原子弹的3800倍,是二战里所有常规炸弹的总能量的10倍。“库兹卡的妈妈”爆炸的时候,产生了直径堪比珠穆朗玛峰高度的大火球(直径8千米),在1000千米外都能看见核爆的闪光。爆炸产生了一朵巨型蘑菇云,高度接近珠穆朗玛峰的8倍(67千米高),蘑菇头部分宽97千米。之所以有这样的威力,是因为它利用了另一种原子核反应产生的能量——核聚变能。图片来源:Wikipedia什么是核聚变?核聚变是两个比较轻原子的原子核融合成一个较重原子核。这个过程也会释放出巨大的能量。同样重量的核聚变燃料(一般是氢的同位素氘、氚)能够产生核裂变4倍的能量,比烧石油或煤炭高400万倍。[1]太阳的能量就是核聚变产生的。图片来源:Wikipedia但核聚变并不容易发生。在说原子结构的时候我们提到过,原子核都是带正电的,两个原子核想要碰撞融合,必须克服斥力,让它们的原子核靠得足够近。这就需要提供超高温、超高压,把大量原子核压在一块,增加它们融合的机会。这种条件在宇宙里并不难找,比如太阳和其他恒星内部,巨大的压力和高温能够维持核聚变反应。但在地球表面,想创造这样的条件并不容易。用原子弹引发核聚变在原子弹爆炸的时候,原子弹中心能够产生上千万度的高温,以及数十亿个大气压的压力。所以,人们自然会想到,在原子弹的核心旁边放上核聚变材料,利用原子弹爆炸时候的能量,也许能引发核聚变。1951年5月,一枚叫“乔治”的实验弹被推上了试验台,在原子弹核心,除了用来引发核裂变的材料之外,还有液态氘。科学家们希望通过它试验原子弹能不能引发核聚变。结果,它发出了远超过原子弹的爆炸威力,由此人们确认了,用原子弹引发核聚变是可行的。乔治爆炸时的景象,图片来源:Wikipedia因为最常使用的核聚变反应来自氢同位素氘和氚的聚变反应,因此,这类核聚变武器又被称为氢弹。虽然氢弹是利用了核聚变,但它是不受控制的核聚变,能够作为武器,但不能作为能源来使用。想要把它用作能源,同样需要“驯服”这股强大的能量。可控核聚变核聚变只有在非常极端的条件下才能发生,因此想要“驯服”这股能量极其困难。主要表现在以下几个方面:首先,利用核聚变发电的条件太苛刻了。根据费米的计算,想利用核聚变发电,等离子体的温度要被加热到大约5000万摄氏度以上[2]。可在地球的自然环境里,不存在这样的高温环境。当然了,科学家们能够利用技术手段创造出这样的高温环境,比如通过电场、粒子束、无线电波振荡(类似微波炉的原理)、磁振荡加热等等。但创造这样的环境,一方面需要消耗大量的能量。另一方面,会带来一个问题,没有任何物质能够盛放被加热后的等离子体。目前已知的熔点最高的物质是碳化钽铪(Ta4HfC5),它的熔点是4215摄氏度。这个熔点和被加热后的等离子体相比,实在是差太多了。为了解决这个问题,目前最成熟的方法是用托克马克装置来约束等离子体,这也是目前最有希望成为核聚变反应堆的容器。托克马克装置原理。图片来源:Wikipedia托克马克装置是通过磁场约束,把等离子体束缚在装置内部,成为一个不断流动的圆环。当然了,目前的技术还不足以让核聚变反应自维持,还需要有辅热系统不断加热等离子流(一般用中性粒子束加热)。目前,在托克马克装置的开发方面,我们国家走在世界前列。中国科学院合肥物质科学研究院的全超导托卡马克核聚变实验装置,在2021年5月,实现了在1.2亿度下运行101秒和1.6亿度下运行20秒的记录。在2021年12月30日,又在接近7000万摄氏度下运行了1056秒,创造了高温等离子体运行的最长时间纪录。在2023年4月,全超导托卡马克核聚变实验装置又一次创造新的世界纪录,成功实现稳态高约束模式等离子体运行403秒。图片来源:新华社尽管取得了这样突破性的成就,但距离我们使用核聚变发电,还有相当长的路要走。运行之后,还有个关键数值在核聚变发电领域,有一个非常重要的指标——Q值。一个核聚变反应堆释放的能量和消耗的外部能量比值被称为Q值。Q值等于1的时候,意味着核聚变反应产生的能量等于它消耗的外部能量。但这时候,并不意味着它能够自我维持发电了,一般认为,当Q值大于5的时候,核聚变反应堆能够自我维持。[3]但在考虑到热能、动能、电能间的转化,国际上公认Q值要达到10以上核电站才能有收益。而如果想成为商业化的核聚变发电站,Q值还需要达到30以上。那到目前为止,人类已经实现的Q值最高记录为0.67,而推算的理论最高值记录是1.25(日本的JT-60,以氘-氘做实验,如果换算成氘-氚,理论值是1.25)。这个值距离核聚变反应堆的自我维持,以及用它来发电还差得很远。但核聚变发电的诱惑实在是太大了,它和传统能源的差别,就像恒星和行星的差别一样,只要掌握了这种恒星级别的能源,人类的文明将向前迈进一大步。因此,世界上许多国家的科学家们也在积极开发这种能源。比如,全世界35个国家共同参与的ITER项目,已经开始在法国建造实验室和各种设备了。建成后,它将是全世界最大的核聚变装置,预计在2036年开始进行全功率核聚变实验,计划能够实现5~10分钟Q值超过10的运转。[3]2023年6月2日,ITER施工现场。图片来源:iter.org不过目前,ITER项目也正在面临工程技术的巨大挑战(点击查看:《1565亿元!史上最烧钱攻关项目,它到底是要做啥?》)。可见,可控核聚变作为人类追求的“终极能源”,还有相当长的一段路要走,即便是各国科学家聚在一起共同努力,也面临着许多无法预见的困难。人类否能在本世纪“驯服”这种能源,我们拭目以待。参考资料[1]https://www.iaea.org/newscenter/news/what-is-nuclear-fusion[2]McCracken,Garry;Stott,Peter(2012). Fusion:TheEnergyoftheUniverse.AcademicPress. ISBN 978-0-12-384657-0.[3]https://www.iaea.org/sites/default/files/6211011zt.pdf策划制作作者丨科学边角料科普创作团队责编丨崔瀛昊责任编辑:落木...PC版:https://www.cnbeta.com.tw/articles/soft/1380769.htm手机版:https://m.cnbeta.com.tw/view/1380769.htm

封面图片

世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中的聚变反应在等离子体放电的5秒阶段以中子的形式释放出总共59兆焦耳的能

世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中的聚变反应在等离子体放电的5秒阶段以中子的形式释放出总共59兆焦耳的能量。(EUROfusion)、英国原子能管理局(UKAEA)和国际热核聚变实验堆(ITER)9日联合召开新闻发布会公布了上述消息。打破了JET曾在1997年产生约22兆焦耳聚变能量的等离子体的世界能源纪录。为了过渡到国际大规模聚变实验(ITER)计划,研究人员此次进行的是氘氚混合燃料聚变实验。同时,为了使JET实验尽可能接近未来的热核聚变实验堆条件,他们用铍和钨的混合物而不是碳覆盖等离子体容器壁,因为金属钨比碳更耐腐蚀,而且不会像碳一样过多地与燃料结合。此次实验在比太阳中心温度高10倍的条件下,产生的聚变能量达到了创纪录水平。ITER设施目前正在法国南部的卡达拉奇建设,预计将使用氘和氚混合燃料,计划实现产出能量10倍于输入能量(聚变增益)。要想产生净能量,即输出能量是加热等离子体所需能量的两倍这一目标,在卡达拉奇ITER设施“上线”之前是不可能实现的。因此,这次实验是在类ITER条件下创造的世界纪录。德国马克斯·普朗克等离子体物理学研究所科学主任西比勒·君特教授表示:“JET的最新实验是向ITER最终目标迈出的重要一步。”()

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人