AI 和机器人帮助设计最佳电池

AI和机器人帮助设计最佳电池美国卡内基·梅隆大学研究人员温卡特·韦斯万纳森、杰·怀塔克利及他们的同事,设计了一个名为“Clio”的定制自动化机器人平台,并与一个名为“蜻蜓”(Dragonfly)的基于贝叶斯优化的AI相结合。利用这些工具,他们证明了该系统能在两个工作日里的42次实验中,自主筛选并确定出6种高导电非水锂离子电池的电解质配方。研究人员指出,他们的方法发现电解质的速度是随机筛选速度的6倍。研究团队在商用锂离子软包电池中测试了该电解质溶液,并以传统的电解质组分作为基线实验,演示了其快速充电的性能。研究团队总结道,他们的研究有助于高性能充电电池的研发,对于更大范围的能源应用和材料科学具有重要意义。前文:来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

相关推荐

封面图片

新型锂金属氯化物固态电解质设计可为电池行业带来变革

新型锂金属氯化物固态电解质设计可为电池行业带来变革固态电解质的必要性目前的商用电池亟需解决的一个问题是对液态电解质的依赖,而液态电解质存在易燃和爆炸的风险。因此,开发不可燃的固体电解质对于推动固态电池技术的发展至关重要。在全球向可持续交通转变的过程中,全世界都在加紧管制内燃机汽车并扩大电动汽车的使用,因此,对二次电池核心部件,尤其是固态电池的研究取得了显著的进展。金属离子(本例中为钇)在各层中的排列会影响离子导电性。为确保锂离子畅通无阻地移动,每层中占据可用位置的金属离子数量应少于0.444。此外,要在每一层中为锂离子创造足够宽的通道,金属离子的占有率应大于0.167。因此,每层内金属离子的占有率应介于0.167和0.444之间,这样才能形成具有高离子电导率的导电层。资料来源:基础科学研究所要使固态电池在日常使用中切实可行,关键是要开发出具有高离子导电性、强大的化学和电化学稳定性以及机械灵活性的材料。虽然之前的研究成功地开发出了具有高离子电导率的硫化物和氧化物基固体电解质,但这些材料都不能完全满足所有这些基本要求。氯化物基固体电解质的研究进展过去,科学家们也曾对氯化物基固体电解质进行过探索。氯化物基固体电解质以其卓越的离子导电性、机械柔韧性和高电压稳定性而著称。这些特性使一些人推测氯化物电池最有可能成为固态电池。然而,这些希望很快就破灭了,因为氯化物电池严重依赖昂贵的稀土金属(包括钇、钪和镧系元素)作为辅助成分,因此被认为是不切实际的。为了解决这些问题,IBS研究小组研究了金属离子在氯化物电解质中的分布。他们认为,三元氯化物电解质之所以能达到较低的离子电导率,是基于结构中金属离子排列的变化。他们首先在氯化锂钇(一种常见的氯化锂金属化合物)上测试了这一理论。当金属离子位于锂离子通路附近时,静电力会阻碍锂离子的移动。相反,如果金属离子的占有率过低,锂离子的移动路径就会变得过于狭窄,从而阻碍锂离子的移动。基于这些见解,研究小组引入了设计电解质的策略,以缓解这些相互冲突的因素,最终成功开发出一种具有高离子电导率的固体电解质。研究小组还进一步成功地展示了这一策略,创造出一种基于锆的锂金属氯化物固态电池,其成本远远低于采用稀土金属的变体。这是首次证明金属离子排列对材料离子导电性的重要影响。金属离子分布的影响这项研究揭示了金属离子分布在氯基固体电解质离子电导率中经常被忽视的作用。预计IBS中心的研究将为各种氯基固体电解质的开发铺平道路,并进一步推动固态电池的商业化,有望提高能源存储的经济性和安全性。通讯作者KangKisuk说:"这种新发现的氯化物基固体电解质有望突破传统硫化物和氧化物基固体电解质的限制,使我们离固态电池的广泛应用更近了一步。"...PC版:https://www.cnbeta.com.tw/articles/soft/1394587.htm手机版:https://m.cnbeta.com.tw/view/1394587.htm

封面图片

研究人员探索使用机器人和人工智能开发更好的电池

研究人员探索使用机器人和人工智能开发更好的电池大约在今年年初,卡内基-梅隆大学的研究人员使用机器人系统又进行了几十次实验,以创造能让锂离子电池更快充电的电解质。这是广泛采用电动汽车的一个主要障碍。他们研发的Clio系统,包括自动泵、阀门和仪器,将各种化学品混合在一起,然后根据关键的电池基准测量其性能。这些结果随后被输入Dragonfly,这是一个机器学习程序,可以提出可能更有效的不同化学组合。PC版:https://www.cnbeta.com/articles/soft/1321899.htm手机版:https://m.cnbeta.com/view/1321899.htm

封面图片

新型锂离子电池材料可在10分钟内充电80%

新型锂离子电池材料可在10分钟内充电80%现在,橡树岭国家实验室的研究人员正在推动电动汽车(EV)快速充电的发展。一个电池科学家团队最近开发出一种锂离子电池材料,不仅能在10分钟内充入80%的电量,还能在1500个充电周期内保持这种能力。ORNL研究员杜志佳将新开发的液态电解质材料插入电池袋电池中。这种配方延长了超快速充电电池(如电动汽车中使用的电池)的寿命。图片来源:GenevieveMartin/ORNL,美国能源部当电池工作或充电时,离子通过一种叫做电解质的介质在电极之间移动。ORNL的杜志佳领导的团队开发出了锂盐与碳酸盐溶剂的新配方,以形成一种电解液,这种电解液能长期保持较好的离子流动性,并在极端快速充电期间大电流加热电池时表现良好。项目合作伙伴测试了在ORNL电池制造厂制造的电池袋电池,以证明电池的安全性和循环特性。杜说:"我们发现,这种新型电解质配方基本上将能源部规定的极限快速充电电池寿命目标提高了两倍。"...PC版:https://www.cnbeta.com.tw/articles/soft/1384165.htm手机版:https://m.cnbeta.com.tw/view/1384165.htm

封面图片

新的充电算法可将锂离子电池的寿命延长一倍

新的充电算法可将锂离子电池的寿命延长一倍柏林亥姆霍兹中心(HZB)和柏林洪堡大学的一个欧洲研究小组开发出一种替代充电方案,使锂离子电池的寿命比现在更长。研究结果表明,通过改变充电器向电解质材料输送电流的方式,电池在经过数百次放电-充电循环后仍能保持较高的能量容量。锂离子电池是一种结构紧凑、坚固耐用的能源容器,已成为人们的宠儿。电动汽车和电子设备都依赖于它们,但随着电解质穿过分隔阳极和阴极的薄膜,它们的容量会逐渐降低。目前最好的商业级锂离子电池使用的电极由一种名为NMC532的化合物和石墨制成,使用寿命长达8年。传统的充电方式是使用恒定电流(CC)的外部电能。研究分析了使用CC充电时电池样品的情况,发现阳极的固体电解质界面(SEI)"明显变厚"。此外,他们还在NMC532和石墨电极结构中发现了更多裂纹。较厚的SEI和电极上较多的裂缝意味着锂离子电池容量的显著损失。因此,研究人员开发了一种基于脉冲电流(PC)的充电协议。使用新的PC协议对电池充电后,研究小组发现SEI接口变薄了很多,电极材料发生的结构变化也更少。研究小组利用欧洲两个领先的粒子加速同步加速器设施"BESSYII"和"PETRAIII"进行了脉冲电流充电实验。他们发现,PC充电可促进石墨中锂离子的"均匀分布",从而减少石墨颗粒中的机械应力和裂纹。该方案还能抑制NMC532阴极的结构退化。研究表明,方波电流的高频脉冲效果最好。测试表明,PC充电可使商用锂离子电池的使用寿命延长一倍,容量保持率达到80%。这项研究的共同作者、柏林工业大学教授JuliaKowal博士说:"脉冲充电可以在电极材料和界面的稳定性方面带来许多优势,并大大延长电池的使用寿命。"...PC版:https://www.cnbeta.com.tw/articles/soft/1427548.htm手机版:https://m.cnbeta.com.tw/view/1427548.htm

封面图片

新型电池技术终将改善电动汽车在极端天气下的性能

新型电池技术终将改善电动汽车在极端天气下的性能改善寒冷天气下充电时间的一种方法是改进电解质,使其同时具有高离子电导率、低溶解能和低熔点,并形成阴离子衍生的无机相。中国浙江大学教授范秀林领导的研究团队刚刚在《自然》杂志上发表了一篇论文,详细介绍了如何做到这一点,此举可能会产生深远影响,使电动汽车在极端天气下更加实用。研究人员认为,改善电解质质量的最佳方法之一是使用溶解能低的小型溶剂,这种溶剂可以改变锂离子在电解质中的移动方式,从而提高电导率并加快充电速度。为此,研究人员使用了一种名为氟乙腈(FAN)的溶剂,他们认为这种溶剂能使锂离子电池同时实现高能量密度、快速充电和宽工作温度范围。值得注意的是,这并不是研究人员第一次尝试解决金属离子电池在极端天气下的问题。几年前,加利福尼亚大学圣迭戈分校的材料科学家兼工程师ZhengChen和他的同事发表了一篇论文,介绍了一种新型电解质,他们声称这种电解质在极端天气下(从零下40华氏度(摄氏零下40度)到122华氏度(摄氏50度))比目前的解决方案效果更好。近年来,电动汽车越来越受欢迎,但由于种种原因,绝大多数购车者仍然选择传统的内燃机汽车(ICE)。大多数传统车主认为,充电时间过长是他们决定不购买电动汽车的主要原因,但关于汽车在恶劣天气下发生故障的恐怖故事也不利于向电动汽车过渡。尽管上述有关新型电解质的研究对整个电动汽车行业来说是一个巨大的利好消息,但特斯拉和Rivian等公司都希望这些新型电解质能够在不久的将来实用到实际的电动汽车电池中。如果实现了这一目标,必将提高电池的耐久性,降低极端天气下的充电速度,使电动汽车在寒冷条件下比以往任何时候都更加实用。...PC版:https://www.cnbeta.com.tw/articles/soft/1422012.htm手机版:https://m.cnbeta.com.tw/view/1422012.htm

封面图片

斯坦福大学研究人员运用高盐电解质设计出防燃电池

斯坦福大学研究人员运用高盐电解质设计出防燃电池我们的手机、笔记本电脑和电动汽车中的锂离子电池有一定的起火风险,因为它们在运行时产生热量。我们已经看到许多有趣的方法来管理这种风险,包括集成阻燃剂、提醒用户注意过热的警告系统,以及在过热发生之前关闭设备的熔断开关。许多有希望的解决方案集中在可燃液体电解质上,它在电池的两个电极之间携带电流。缺陷和温度上升会导致这些电解质膨胀和/或点燃,然后可能导致智能手机或电动汽车起火。这一过程通常在140°F(60°C)左右发生,电解质中的溶剂开始蒸发并从液体变成气体。斯坦福大学的研究生、这项新研究的第一作者RachelZHuang说:"电池行业最大的挑战之一就是这个安全问题,所以有很多努力在尝试制造一种安全的电池电解质。"斯坦福大学的研究生RachelHuang共同开发了一种用于锂电池的新型电解质Jian-ChengLai/StanfordUniversity黄和她在斯坦福大学和SLAC国家加速器实验室的同事已经开发出一种能够承受高温而不起火的电池。这种基于聚合物的新型电解质包含了大量的锂盐,称为LiFSI,占其总重量的63%。与直觉相反的是,它与易燃的溶剂分子配对,两者形成一种共生关系,有利于电池的安全和性能。溶剂分子使电解质能够传导离子,并达到与传统电解质相同的性能,而高浓度的盐则固定了这些分子,防止它们蒸发,进而防止火灾。该团队的不易燃电解质在锂离子电池中进行了测试,它能够从室温一直安全运行到212°F(100°C)。在左边可以看到标准的电池材料起火,而在右边可以看到一种新颖的不易燃材料能够抵御这种情况。斯坦福大学的教授ZhenanBao说:"这项新发现为基于聚合物的电解质设计指出了一条新的思路。这种电解质对于开发未来既高能量密度又安全的电池非常重要"。该团队的新电解质的一个关键特征是,它具有类似于传统电解质的胶状形式,这意味着它可以与现有的电池部件集成,而不像其他实验性的不易燃电解质。该团队认为在电动汽车的应用中特别有潜力,在那里电池可以更紧密地挤在一起,而没有过热的风险。这将等同于提高能量密度和扩大范围。研究作者YiCui说:"这种非常令人兴奋的新电池电解质与现有的锂离子电池技术兼容,并将对消费电子和电气运输产生巨大影响。"这项研究发表在《物质》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1334701.htm手机版:https://m.cnbeta.com.tw/view/1334701.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人