化学家创造出彩虹色有机分子 可用于医疗成像、有机发光二极管等领域

化学家创造出彩虹色有机分子可用于医疗成像、有机发光二极管等领域稠合碳环具有独特的光电特性,一类被称为并苯的分子链经调节可发出不同颜色的光,这使它们成为有机发光二极管的理想候选者。并苯发出的光的颜色由其长度决定,但随着分子变长,它们也变得不稳定。美国麻省理工学院的化学家开发出一种新方法,可使苯分子更稳定,并能合成不同长度的并苯。他们成功造出了发射红色、橙色、黄色、绿色或蓝色光的分子,拓宽了并苯的应用范围,为开发高度空气及光稳定的发光材料和微型能量收集装置铺平了道路。相关论文发表在《自然・化学》杂志上。

相关推荐

封面图片

构建分子通道:有机发光二极管(OLED)的突破性进展

构建分子通道:有机发光二极管(OLED)的突破性进展由于其特殊的化学结构,分子呈螺旋状排列。其结果是电子传导核心被屏蔽,从而提高了有机发光二极管的效率。资料来源:MPI-P影响这些材料性能的一个重要因素是存在少量无法完全去除的杂质。这些杂质(如氧分子)会阻碍电子在二极管内的移动,从而干扰光的产生过程。当电子被这些杂质困住时,其能量就会转化为热量而不是光。这种现象被称为"电荷捕获",主要影响蓝色有机发光二极管,导致其效率大幅降低。由马克斯-普朗克聚合物研究所所长保罗-布洛姆(PaulBlom)领导的团队最近利用一类新型分子解决了电荷捕获问题。这些分子由两个化学部分组成:一部分有利于电子传导,而另一部分对杂质不敏感。通过操纵分子的化学结构,可以实现特殊的空间排列:当几个分子连接在一起时,它们会形成一种"螺旋"状,即分子的电子传导部分形成内部,而外部则被分子的另一部分所屏蔽。从分子的角度看,这就像一根同轴电缆,内芯为电子传导部分,外芯为屏蔽部分。因此,包层为电子导电内核形成了一种"保护层",使其免受氧分子的侵入。这样,电子就可以沿着螺旋的中心轴快速、自由地运动,而不会被障碍物困住,就像高速公路上的汽车没有十字路口、红绿灯或其他障碍物一样。保罗-布洛姆说:"我们的新材料的一个特别之处在于,由于没有杂质造成的损耗,电子传输效率高,因此可以大大简化蓝色有机发光二极管的设计,同时保持高效率。"研究人员希望通过这种创新方法大大简化蓝色发光二极管的生产。他们的研究成果发表在《自然-材料》(NatureMaterials)杂志上,标志着有机发光二极管技术向前迈出了重要一步。...PC版:https://www.cnbeta.com.tw/articles/soft/1375127.htm手机版:https://m.cnbeta.com.tw/view/1375127.htm

封面图片

【中科院研制超高分辨率量子点发光二极管打开“元宇宙”通路】

【中科院研制超高分辨率量子点发光二极管打开“元宇宙”通路】福州大学教授李福山团队联合中科院宁波材料技术与工程研究所研究员钱磊,将有序分子自组装技术和转移印刷技术相结合,制备出高性能的超高分辨率量子点发光二极管。相关成果日前在线发表于《自然—光子学》。开发具有千级乃至万级PPI(每英寸所拥有的像素数目)、可在微小空间输出海量信息的极高分辨率显示器,是进入“元宇宙”的重要途径。该研究中,科研人员利用有序分子自组装技术实现了致密无缺陷的量子点单层膜,并结合转移印刷技术实现了亚微米级像素的超高分辨率量子点显示,其最高分辨率达到~25000PPI(人眼极限分辨率约为300PPI),可轻松制备出亚微米级像素的超高分辨率量子点发光二极管。

封面图片

我国科研团队钙钛矿发光二极管研究取得重大突破

我国科研团队钙钛矿发光二极管研究取得重大突破近日,我国科研团队在钙钛矿发光二极管(LED)研究领域取得重大突破。通过加快辐射复合速率,显著提高荧光量子效率,使钙钛矿LED外量子效率突破30%大关,接近实现产业化水平。相关研究成果的论文日前在国际学术期刊《自然》发表。钙钛矿半导体材料的LED是一类新兴的薄膜LED,具有加工工艺简便、高亮度高效率等特性,近年来在光电器件研究领域备受瞩目,成为全球新型发光与显示技术竞争的焦点。(新华社)

封面图片

我国学者制备出高效稳定钙钛矿发光二极管

我国学者制备出高效稳定钙钛矿发光二极管中国科学院宁波材料技术与工程研究所团队深挖机理、创新工艺,制备出一款高效稳定的钙钛矿发光二极管,相关论文5日发表于国际学术期刊《自然・光子学》。中国科学院宁波材料所向超宇研究员是论文通讯作者之一。他介绍说,钙钛矿材料是一种光电材料,具有光电性能优异、制备成本低的优点。与目前常见的OLED(有机发光二极管)相比,钙钛矿发光二极管可以将色彩纯度提升至少1倍。但这一材料运行稳定性较低,阻碍了应用发展。“这项研究结果将推动钙钛矿材料在发光显示领域的应用。”向超宇说。(新华社)

封面图片

钙钛矿发光二极管(LED)是最新兴起的显示技术,如何突破钙钛矿LED红光发射的效率瓶颈?上海大学在《自然》杂志上的最新研究,创造

钙钛矿发光二极管(LED)是最新兴起的显示技术,如何突破钙钛矿LED红光发射的效率瓶颈?上海大学在《自然》杂志上的最新研究,创造了红光钙钛矿LED发光效率的新纪录。2024年6月12日,上海大学机电工程与自动化学院新显教育部重点实验室杨绪勇教授研究团队与合作单位团队关于“稳定钙钛矿八面体实现高效红光LED”最新研究成果,以Fabricationofred-emittingperovskiteLEDsbystabilizingtheiroctahedralstructure为题在国际顶尖期刊《自然》(Nature)上发表。(澎湃新闻)

封面图片

MIT化学家成功提高烯类分子的稳定性 合成多彩有机分子

MIT化学家成功提高烯类分子的稳定性合成多彩有机分子熔融含碳环链具有独特的光电特性,可用作半导体。这些被称为烯的链还可以调整为发出不同颜色的光,这使它们成为有机发光二极管的理想候选材料。烯类发出的光的颜色由其长度决定,但随着分子变长,它们的稳定性也会降低,这阻碍了它们在发光应用中的广泛使用。现在,麻省理工学院的化学家们想出了一种使这些分子更加稳定的方法,从而可以合成不同长度的烯。利用这种新方法,他们能够制造出能发出红光、橙光、黄光、绿光或蓝光的分子,从而使烯更容易应用于各种领域。麻省理工学院的化学家们想出了一种让烯类分子更加稳定的方法。在这里,艺术家的诠释显示了风格化的烯类发出红色、橙色、黄色、绿色和蓝色的光。资料来源:Jose-LuisOlivares,麻省理工学院麻省理工学院诺华化学副教授、这项新研究的资深作者罗伯特-吉利亚德(RobertGilliard)说:"这一类分子尽管有用,但在反应性方面存在挑战。在这项研究中,我们首先要解决的是稳定性问题,其次,我们想制造出可以在一定范围内调节光发射的化合物。"麻省理工学院研究科学家邓春林是这篇论文的第一作者,论文于12月5日发表在《自然-化学》杂志上。烯由苯分子(由碳和氢组成的环)以线性方式融合在一起。由于它们富含可共享电子并能高效地传输电荷,因此一直被用作半导体和场效应晶体管(利用电场控制半导体中电流流动的晶体管)。最近的研究表明,用硼和氮取代或"掺杂"部分碳原子的烯具有更有用的电子特性。然而,与传统的烯类一样,这些分子在暴露于空气或光线时并不稳定。通常情况下,烯必须在一个称为手套箱的密封容器中合成,以防止它们暴露在空气中而导致分解。时间越长,烯就越容易受到氧气、水或光线的影响而发生不必要的反应。烯由苯分子组成,苯分子是由碳和氢组成的环,以线性方式融合在一起。研究人员利用一种新方法,根据碳二炔的长度和所附化学基团的类型,创造出了能产生不同颜色的烯。图片来源:研究人员提供为了尝试让烯烃变得更加稳定,吉利亚德决定使用一种他的实验室以前曾使用过的配体,即碳二炔。在去年发表的一项研究中,他们用这种配体稳定了硼芴离子,这种有机化合物能随着温度的变化发出不同颜色的光。在这项研究中,吉利亚德和他的合著者开发了一种新的合成方法,使他们能够将碳二烯烃添加到同时掺杂硼和氮的烯烃中。加入新配体后,烯类带正电荷,从而提高了其稳定性,并赋予其独特的电子特性。利用这种方法,研究人员创造出了能产生不同颜色的烯,这取决于它们的长度和连接到碳二炔上的化学基团的类型。到目前为止,合成的大多数掺硼、掺氮烯只能发出蓝光。"红色发射对于广泛的应用非常重要,包括成像等生物应用,"吉利亚德说。"很多人体组织都会发出蓝光,因此很难使用蓝色荧光探针进行成像,这也是人们寻找红色发射体的众多原因之一。"应用和未来方向这些烯类化合物的另一个重要特点是,它们在空气和水中都能保持稳定。配位数较低的含硼带电分子(即中心硼原子的邻位较少)在水中通常极不稳定,因此烯属化合物在水中的稳定性值得注意,这使得将它们用于成像和其他医疗应用变得可行。"我们之所以对本文报告的这一类化合物感到兴奋,原因之一就是它们可以悬浮在水中。这开辟了广泛的可能性,"吉利亚德说。研究人员现在计划尝试加入不同类型的碳化二烯类化合物,看看他们能否创造出稳定性和量子效率(衡量材料发出多少光的指标)更好的其他烯类化合物。吉利亚德说:"我们认为有可能制造出许多我们尚未合成的不同衍生物。有很多光电特性是我们尚未探索到的,我们对此也很兴奋。"吉利亚德还计划与麻省理工学院电气工程教授马克-巴尔多(MarcBaldo)合作,尝试将新型烯类化合物融入一种被称为单裂变太阳能电池的太阳能电池中。这种太阳能电池可以从一个光子中产生两个电子,使电池的效率大大提高。这类化合物还可以开发用作电视和电脑屏幕的发光二极管。有机发光二极管比传统的发光二极管更轻、更灵活,能产生更明亮的图像,而且功耗更低。吉利亚德说:"无论是有机半导体、发光器件,还是基于单子裂变的太阳能电池,我们仍处于开发具体应用的早期阶段,但由于它们的稳定性,器件的制造应该比一般的此类化合物要顺利得多。"通过将活性零价碳和阳离子硼物种结合起来,这项具有非传统范例的创造性工作无疑为开发高度空气和光稳定的发光材料和微型能量收集装置铺平了一条充满希望的道路。参考文献"邓春林、AkachukwuD.Obi、BiYouanE.Tra、SamirKumarSarkar、DianeA.Dickie和RobertJ.GilliardJr.合著的《空气和光稳定发光的碳二碳烯-氮杂硼砷离子》,2023年12月5日,《自然-化学》。DOI:10.1038/s41557-023-01381-03编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404793.htm手机版:https://m.cnbeta.com.tw/view/1404793.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人