中国可能在2027年建造世界最大粒子加速器

中国可能在2027年建造世界最大粒子加速器北京正负电子对撞机模型(新华社)报道称,建造CEPC的提案明年将提交中国政府。根据6月3日发布的一份综合技术设计报告,如果该项目能获得政府支持,可能会在2027年动工,大约需要10年时间建造。报告估计,这台超大型对撞机将耗资364亿元人民币(约52亿美元),建造和运行成本要比欧洲耗资170亿美元的未来环形对撞机(FCC)低得多。如果获得批准,FCC的建造工作将于本世纪30年代开始。在其巨大的地下隧道内,CEPC将在极高的能量下,让电子与其反粒子正电子进行碰撞,产生数以百万计的希格斯玻色子。香港科技大学理论物理学家安德鲁·科恩说,单是它们庞大的数量就将使研究人员能够比以往更详细地研究这种粒子。通过更精确地测量希格斯玻色子,研究人员将能够探索超越标准模型的问题——标准模型是关于宇宙构成的主要但不完整的理论——比如暗物质的性质,以及为什么宇宙中普通物质比反物质多。据报道,中国科学院北京高能物理研究所所长王贻芳说,最新的报告包括加速器布局设计和组件原型的详细蓝图。报告还包括对3个可能地点的评估,包括秦皇岛、长沙和湖州。位于瑞士日内瓦附近的欧洲核子研究中心的物理学家弗兰克·齐默尔曼说,计划用于中国巨型对撞机的许多部件已经在国内其他设施上进行了测试。其中包括在北京接近完工的高能同步辐射光源。齐默尔曼说,鉴于中国已经拥有一台类似CEPC的对撞机(北京正负电子对撞机),中国目前在这一领域的专业知识可能比整个欧洲加起来还要多。他说:“他们取得了重大进展。”同时也是CEPC国际咨询委员会成员的安德鲁·科恩说,技术设计报告表明,中国有能力在几乎没有国际研究人员帮助的情况下建造CEPC。他说:“如果他们想建造加速器并向前发展,他们是可以做到的。”然而,王贻芳相信,CEPC将是一项国际性的努力。他指出,在中国一些大型物理设施的团队中,国际研究人员已经占了不小的比例,其中包括位于广东开平市的江门中微子实验室,该实验室将于今年开始运行。他说:“我们相信(CEPC)也将是类似的。”(编译/王海昉)...PC版:https://www.cnbeta.com.tw/articles/soft/1435797.htm手机版:https://m.cnbeta.com.tw/view/1435797.htm

相关推荐

封面图片

中国可能在 2027 年建造世界最大粒子加速器

中国可能在2027年建造世界最大粒子加速器中国希望三年内开始建造世界最大粒子加速器。100公里长的CircularElectronPositronCollider(CEPC)设计精确测量希格斯玻色子。CEPC的提案将于明年递交给政府,可能会包含在下一个五年计划中。根据本月初公开的技术设计报告,如果赢得政府支持,加速器的建造将于2027年启动,预计花费十年时间,耗资364亿元人民币。而欧盟计划中的下一代加速器FutureCircularCollider(FCC)预计花费170亿欧元,其建造工作预计要到2030年代。CEPC将以极高的能量对撞正反电子,产生数以百万计的希格斯玻色子,允许科学家比以往任何时候更仔细的研究这种赋予万物质量的粒子。由于地缘政治紧张局势,CEPC面临的一大障碍是国际支持,今天中国很多大型物理设施中外国研究人员已经占到了三到五成。来源,频道:@kejiqu群组:@kejiquchat

封面图片

中国或于 2027 年开始建造世界最大粒子对撞机

中国或于2027年开始建造世界最大粒子对撞机中国希望在三年内开始建造一台直径100公里的环形正负电子对撞机(CEPC),该设施将成为世界上最大的粒子加速器。CEPC的提案将在明年提交中国政府,可能被纳入其下一个五年计划。根据6月3日发布的一份综合技术设计报告,如果能获得政府支持,建设将于2027年开始,耗时约十年。该报告估计,这台超大型对撞机将耗资364亿元人民币(52亿美元),这将使其建造和运行成本大大低于欧洲耗资170亿美元的未来环形对撞机(FCC)。如果获得政府批准,欧洲设施将于2030年代开始建设。由于地缘政治紧张局势,CEPC面临的一大障碍是国际支持,设计报告显示中国可以在没有外国帮助的情况下建造该设施,但在缺乏国际资金和项目的情况下可能难以开发其潜力。——,

封面图片

俄媒:全球最大粒子加速器因欧洲能源危机面临关闭

俄媒:全球最大粒子加速器因欧洲能源危机面临关闭据今日俄罗斯电视台网站4日报道,欧洲核子研究中心(CERN)能源管理小组负责人谢尔盖克·克洛代承认,欧洲能源危机可能对全球最大粒子加速器——大型强子对撞机(LHC)造成影响。克洛代4日对美国《华尔街日报》记者说,该机构目前正在制定应急计划,有可能在用电高峰期关闭LHC,以减少能源消耗。然而,科学家们将设法维持LHC的运转,避免这台价值44亿美元的机器突然关闭。报道称,LHC是CERN位于法国和瑞士边界的庞大综合设施中的8台粒子加速器之一,在用电高峰期,它大约需要200兆瓦的电力,相当于整个日内瓦市电力消耗量的三分之一。CERN希望与能源供应商法国电力公司达成协议,要求该公司在LHC必须减少能源消耗时提前一天发出通知。报道称,俄乌冲突导致欧洲正面临一场严峻的能源危机,与此同时,法国的多座核反应堆管道系统出现腐蚀问题,令法国的能源供应更加紧张。(编译/王栋栋)...PC版:https://www.cnbeta.com/articles/soft/1312511.htm手机版:https://m.cnbeta.com/view/1312511.htm

封面图片

世界首台微型粒子加速器亮相 结构长度仅0.5毫米

世界首台微型粒子加速器亮相结构长度仅0.5毫米到目前为止,还没有证据表明这种方法能大幅提高能量。换句话说,还没有证明电子的速度确实有了显著提高。现在,弗里德里希-亚历山大-埃尔兰根-纽伦堡大学(FAU)的激光物理学家团队与斯坦福大学的同事们同时成功展示了首个纳米光子电子加速器。德国联邦科学院的研究人员首次成功地在只有几纳米大小的结构中对电子进行了可测量的加速。在图片中,您可以看到带有这些结构的微型芯片,与之相比,这是一枚1美分硬币。图片来源:FAU/JulianLitzel粒子加速器及其纳米光子演变当人们听到"粒子加速器"时,大多数人可能会想到位于日内瓦的欧洲核子研究中心的大型强子对撞机,这个长约27公里的环形隧道被来自全球各地的研究人员用来研究未知的基本粒子。然而,这种巨大的粒子加速器是个例外。在日常生活中,我们更有可能在其他地方遇到它们,例如在医学成像程序或放射治疗肿瘤的过程中。不过,即便如此,这些设备的体积仍有数米之大,而且相当笨重,在性能方面还有待改进。为了改进和缩小现有设备的体积,全球物理学家正在研究介质激光加速装置,也称为纳米光子加速器。他们使用的结构长度仅为0.5毫米,电子被加速通过的通道宽度仅为大约225纳米,这使得这些加速器与计算机芯片一样小。粒子通过照射纳米结构的超短激光脉冲加速。"最近发表的论文的四位主要作者之一TomášChlouba博士解释说:"我们梦想的应用是在内窥镜上安装粒子加速器,以便能够直接对体内受影响的部位进行放射治疗。这个梦想对于彼得-霍梅尔霍夫(PeterHommelhoff)教授领导的、由TomášChlouba博士、RoyShiloh博士、StefanieKraus、LeonBrückner和JulianLitzel组成的激光物理学教研室的FAU团队来说可能还遥不可及,但他们现在已经通过展示纳米光子电子加速器成功地朝着正确的方向迈出了决定性的一步。罗伊-希洛博士兴奋地说:"我们第一次真正可以在芯片上实现粒子加速器。"引导电子+加速=粒子加速器就在两年多前,研究小组取得了第一个重大突破:他们成功地使用了早期加速理论中的交替相聚焦(APF)方法来控制电子在真空通道中的长距离流动。这是建造粒子加速器道路上迈出的重要一步。现在,获得大量能量所需的就是加速。斯蒂芬妮-克劳斯解释说:"利用这种技术,我们现在不仅成功地引导了电子,而且还在这些纳米制造的结构中加速了电子,其长度达到半毫米。虽然这对许多人来说听起来并不算什么成就,但它却是加速器物理学领域的巨大成功,我们获得了12千电子伏的能量。莱昂-布吕克纳解释说。为了将粒子加速到如此大的距离(从纳米尺度看),FAU的物理学家将APF方法与专门开发的柱形几何结构相结合。不过,这次演示只是一个开始。现在的目标是提高能量和电子电流的增益,使芯片上的粒子加速器足以应用于医学领域。为此,能量增益必须提高约100倍。TomášChlouba解释了FAU激光物理学家的下一步计划。埃尔兰根激光物理学家的研究成果几乎同时被美国斯坦福大学的同事们展示出来:他们的成果目前正在审查中,但可以在资料库中查看。在戈登和贝蒂-摩尔基金会(GordonandBettyMooreFoundation)资助的一个项目中,这两个团队正在合作实现"芯片上的加速器"。"2015年,FAU和斯坦福大学领导的ACHIP团队对粒子加速器设计的革命性方法有了一个愿景,"戈登和贝蒂-摩尔基金会的加里-格林伯格博士说,"我们很高兴我们的支持帮助将这一愿景变成了现实。"...PC版:https://www.cnbeta.com.tw/articles/soft/1391415.htm手机版:https://m.cnbeta.com.tw/view/1391415.htm

封面图片

设想中的C3冷铜对撞机有望重新定义粒子物理学的能效

设想中的C3冷铜对撞机有望重新定义粒子物理学的能效自从2012年发现希格斯玻色子以来,物理学家们一直希望建造新的粒子对撞机,以便更好地了解这种难以捉摸的粒子的特性,并在更高的能量尺度上探测基本粒子物理学。诀窍在于,这样做需要能量--大量的能量。一台典型的对撞机需要数百兆瓦(相当于数千万个现代灯泡)来运行。这还不算建造这些设备所需的能源,所有这些加起来就会产生一件事:大量的二氧化碳和其他温室气体。现在,来自美国能源部SLAC国家加速器实验室和斯坦福大学的研究人员已经想好了如何让一个方案:更加节能的冷铜对撞机(C3)。为了了解如何做到这一点,他们考虑了适用于任何加速器设计的三个关键方面:科学家们将如何操作对撞机、对撞机本身首先是如何建造的,甚至是对撞机的建造地点--这对项目的整体碳足迹有着重大的影响,即使是间接影响。拟建的冷铜对撞机光束隧道剖面图。资料来源:EmilioNanni/SLAC国家加速器实验室"在讨论大科学时,现在必须不仅考虑财务成本,还要考虑环境影响,"SLAC助理教授、新论文的共同作者之一CaterinaVernieri说,该论文发表在PRXEnergy上。该论文发表在《PRXEnergy》上。SLAC助理教授、另一位合著者EmilioNanni对此表示赞同。"作为科学家,我们都希望不仅通过我们的发现,而且通过我们的行动来激励公众和后代,"Nanni说。"这就要求我们既要考虑潜在的科学影响,也要考虑对我们社区的整体影响。让设施更具可持续性将有助于实现这两个目标。"对撞机设计变化与环境影响对于能够探测希格斯粒子及其他粒子的下一代加速器,有许多不同的建议,C3是其中之一,不过它们都遵循两种基本设计之一:线性加速器,如C3和拟议中的国际直线对撞机;同步加速器,或未来的环形加速器,如未来环形对撞机或环形电子正负电子对撞机。它们各有利弊。值得注意的是,同步加速器可以重复循环粒子束,这意味着它们可以在多个循环中收集数据。不过,它们也有局限性,因为质子和电子等带电粒子在路径弯曲成圆形时会损失能量,从而增加功耗。直线加速器不存在能量损失问题,因此可以获得更高的能量,为新的测量提供了可能,但它们只使用一次光束,要实现更高的数据传输率,它们需要使用高强度的光束。C3的目标是通过新的设计,包括在更多点向加速器输入更精确的定制电磁场以及新的低温冷却系统,来解决大多数直线加速器在长度与能量方面的限制。该项目还旨在使用更多可互换部件和可显著降低成本的建造方法,最终制造出一个成本相对较低的小型对撞机--短至约五英里--但仍能探索粒子物理学的极端前沿。让大物理更具可持续性尽管如此,拟议中的C3对撞机仍将耗费大量资源来建造和运行,因此其支持者从如何运行加速器本身入手,将大型物理项目的碳足迹纳入考虑范围,从而解决了人们日益关注的问题。一直以来,物理学家都不太关注如何运行加速器,至少在能源效率方面。然而,SLAC和斯坦福大学的研究小组发现,一些细微的变化,如改变粒子束的结构和改进产生驱动粒子束的电磁场的克利斯特伦的运行方式,都能带来不同的效果。这些改进加在一起,可以将C3的电力需求从大约150兆瓦减少到77兆瓦,或者说减少近一半。Vernieri说:"如果能减少50%,我就心满意足了。"另一方面,研究小组发现,建筑本身可能是C3碳足迹的主要来源,尤其是在全球转向使用更多可再生能源的情况下。研究人员建议,使用不同的材料,如不同形式的混凝土,以及注意材料的制造和运输方式,可以帮助降低对全球变暖的影响。此外,C3的体积也比其他加速器方案小得多--只有8公里长,这将减少材料的总体使用量,并允许建筑商选择可以简化和加快施工的地点。研究人员还考虑了C3项目的选址问题,因为这可能会影响为对撞机提供动力的化石燃料与可再生能源的组合,或者可能会建造一个专门的太阳能发电场,与储能系统一起满足加速器的需求。未来对撞机的可持续性比较最后,SLAC-斯坦福团队研究了C3与其他未来对撞机方案的比较,以及线性对撞机和环形对撞机在进行类似测量时的比较。根据他们的分析以及对其他加速器进行的类似可持续发展研究,研究小组发现,建造可能是项目碳足迹的主要驱动因素,但能够实现类似物理目标的环形对撞机通常会在建造过程中产生较高的排放量。同样,较短的加速器,如C3和另一个提案--紧凑型直线对撞机,与较长的加速器相比,全球变暖的可能性较小。"对于研究物理项目的可持续性,这是一个全新的领域,但也是一个必要的领域。至少有一个全新的讨论提出了粒子物理学的碳足迹问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1395307.htm手机版:https://m.cnbeta.com.tw/view/1395307.htm

封面图片

科学家研发全球最小粒子加速器

科学家研发全球最小粒子加速器科学家近日成功研发出了全球首台纳米光子电子加速器(NEA),相干地结合了粒子加速和横向束约束,可以在225nm宽的通道中,加速和引导电子超过500μm的距离。这台NEA由一个小型微芯片组成,内部装有更小的真空管,该真空管由数千个单独的“柱子”组成,研究人员可以通过向这些柱子发射微型激光束来加速电子。这台NEA主加速管长约0.02英寸(0.5毫米),相比较欧洲核子研究组织大型强子对撞机(LHC)的16.8英里(27公里),仅为5400万分之一。微小隧道的内部宽度仅为225纳米左右(人类头发的厚度为80000至100000纳米)。该科研项目由德国埃尔朗根-纽伦堡大学,以色列耶路撒冷希伯来大学和德国马克斯・普朗克光科学研究所共同推进,在实验中观察到最大相干能量增益为12.3keV,相当于从最初的28.4keV增加到40.7keV,能量增加了43%。来源,频道:@kejiqu群组:@kejiquchat

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人