每小时重复一次的太空无线电信号ASKAP J1935+2148令人费解

每小时重复一次的太空无线电信号ASKAPJ1935+2148令人费解ASKAP与它发现的重复无线电信号的两个最有可能的候选信号的艺术家印象图该信号首次出现在澳大利亚ASKAP射电望远镜收集的数据中,该望远镜可同时观测大片天空,寻找瞬时脉冲信号。这个信号被正式命名为ASKAPJ1935+2148,似乎每53.8分钟重复一次。不管是什么,信号会在三种不同的状态中循环。有时,它发射出持续10到50秒的明亮闪光,具有线性极化,这意味着无线电波都"指向"同一个方向。其他时候,它的脉冲要弱得多,呈圆形极化,仅持续370毫秒。有时,该物体还会错过周期,保持沉默。这项研究的第一作者曼尼莎-卡勒布博士说:"耐人寻味的是,这个天体显示出三种截然不同的发射状态,每种状态的性质都与其他状态完全不同。南非的MeerKAT射电望远镜在区分这些状态方面发挥了至关重要的作用。如果这些信号不是来自天空中的同一个点,我们就不会相信是同一个物体产生了这些不同的信号。"那么,如此诡异的无线电信号背后会是什么呢?让我们把话说在前面:这不可能是外星人干的。据发现它的科学家说,最有可能的解释是,它来自一颗中子星或白矮星。但这并不是一个完美的解决方案,因为信号的奇怪特性并不符合我们对这两种天体物理特性的理解。中子星和白矮星相当相似,但也有一些关键的区别。它们都是由更大的恒星死亡后诞生的,原始质量决定了最终得到的是中子星还是白矮星。众所周知,中子星会定期发射无线电波,因此它们是主要的嫌疑对象。中子星的强磁场和复杂的等离子体流之间的相互作用有可能产生如此不同的信号。但有一个大问题:它们通常以每圈几秒或几分之一秒的速度旋转。从物理上讲,它们不可能每54分钟慢速旋转一次。另一方面,白矮星旋转得这么慢也没有问题,但正如研究小组所说,"我们不知道白矮星有什么办法能产生我们在这里看到的无线电信号"。这已经不是第一次来自太空的重复无线电信号让科学家们感到困惑了。几年前,人们发现了另一个18分钟的循环信号,这应该也是不可能的。这个新信号不仅时间更长,而且更加复杂,从而加深了谜团。至于这个信号是来自一颗不寻常的中子星、一颗难以捉摸的"白矮脉冲星",还是其他什么东西,只有通过更多的观测才能找到答案。"卡勒布说:"它甚至可能促使我们重新考虑我们几十年来对中子星或白矮星的理解;它们如何发射无线电波,以及它们在银河系中的种群是什么样的。这项研究发表在《自然-天文学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1433842.htm手机版:https://m.cnbeta.com.tw/view/1433842.htm

相关推荐

封面图片

磁星"星震"可能是来自太空的神秘无线电信号的源头

磁星"星震"可能是来自太空的神秘无线电信号的源头自2007年首次发现以来,人类已经探测到数千次FRB,有些是一次性事件,有些则在可预测或随机的时间范围内重复出现。艺术家描绘的磁星,它是快速射电暴之谜的主要嫌疑人欧空局究竟是什么导致了这些事件的发生仍然是个谜,但由于现在记录在案的FRB数量如此之多,天文学家们已经能够做出一些有根据的猜测。其中一些被追溯到中子星--大质量恒星坍缩的内核--特别是那些具有极强磁场的中子星,即磁星。即便如此,我们仍然很难解释这些天体是如何产生信号的。但现在我们可能更接近答案了。东京大学的科学家们分析了来自重复源的数千个FRB的时间-能量相关性,并将它们与其他高能事件进行了比较。太阳耀斑一直是一种有力的解释,但有趣的是,研究小组发现这些耀斑与FRB之间存在明显差异。然而,FRB和地震之间却有惊人的相似之处。"首先,单一事件发生余震的概率为10%-50%,"该研究的共同作者TomonoriTotani教授说。"其次,余震发生率随着时间的推移而降低,为时间的幂次;第三,即使FRB-地震活动(平均发生率)发生显著变化,余震发生率也始终保持不变;第四,主震和余震的能量之间没有相关性。"那么,对于我们这些不精通统计分析的人来说,这一切意味着什么呢?研究小组说,这些发现表明,FRB可能不是由中子星的耀斑产生的,而是由"星震"产生的,"星震"会突然释放出巨大的能量。更奇怪的是,有些中子星可能真的有坚固的外壳供这些地震发生--最近对磁星的X射线观测支持了这一假设。当然,这种奇怪的假设还需要更多的研究来证实或排除。由于经常发生如此多的FRB,因此不乏数据可供研究。这项研究发表在《皇家天文学会月刊》(MonthlyNoticesoftheRoyalAstronomicalSociety)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1390513.htm手机版:https://m.cnbeta.com.tw/view/1390513.htm

封面图片

无线电信号揭示了热核超新星爆炸的起源

无线电信号揭示了热核超新星爆炸的起源艺术家对双星系统的印象:一颗紧凑的白矮星从富含氦气的供体伴星中吸收物质,周围是密集的尘埃物质。正是爆炸的恒星和这个伴星留下的物质的相互作用,产生了强烈的无线电信号和SN2020eyj的光学光谱中明显的氦线。资料来源:AdamMakarenko/W.M.Keck天文台斯德哥尔摩大学天文学系博士后、论文第一作者ErikKool解释说:"一旦我们看到了与来自伴星的物质发生强烈相互作用的特征,我们就可以试图在无线电发射中也探测到它。"在无线电中的探测是第一个Ia型超新星的探测--这是天文学家几十年来一直试图做的事情。超新星2020eyj是由帕洛玛山上的兹威基瞬变设施相机发现的,斯德哥尔摩大学的奥斯卡-克莱因中心是其成员。天文学系的JesperSollerman教授和论文的共同作者说:"在拉帕尔马的北欧光学望远镜是跟踪这颗超新星的基础。夏威夷岛上的大型凯克望远镜的光谱也是如此,它立即揭示了爆炸恒星周围非常不寻常的以氦为主的物质。"ErikKool(中间)和JoelJohansson(左)是斯德哥尔摩大学OskarKlein中心的博士后,与天文学系的JesperSollerman教授(右)是本文的主要作者。资料来源:MagnusNäslund"这显然是一个非常不寻常的Ia型超新星,但仍然与我们用来测量宇宙膨胀的超新星有关,"物理系的JoelJohansson补充说。"虽然正常的Ia型超新星似乎总是以相同的亮度爆炸,但这颗超新星告诉我们,白矮星的爆炸有许多不同的途径。"...PC版:https://www.cnbeta.com.tw/articles/soft/1360623.htm手机版:https://m.cnbeta.com.tw/view/1360623.htm

封面图片

太空中已知的重复无线电信号源的数量增加了一倍

太空中已知的重复无线电信号源的数量增加了一倍像科学中的许多事情一样,名字说明了一切--FRB是来去极快的无线电信号爆发,仅持续数毫秒。有时它们似乎是一闪而过,而其他信号则随机重复或以可预测的模式重复。通过监测这些重复的信号,科学家们已经在天空中追踪到其中一些信号的25个来源。而现在这个数字已经翻了一番,这要感谢一个国际天文学家团队和CHIME,一个每天扫描整个北半球天空的射电望远镜阵列。利用新的统计工具,该团队分析了CHIME在2019年9月至2021年5月期间收集的数据,试图缩小检测到的FRB的来源,以及可能归因于同一来源的信号之间是否存在一些重叠。"我们对数据进行了梳理,以找到迄今为止检测到的每一个重复源,包括不太明显的,"该研究的第一作者ZiggyPleunis说。"这些新工具对这项研究至关重要,因为我们现在可以准确地计算出两个或更多来自类似地点的爆发的概率,而不仅仅是一个巧合。这对今后的类似研究应该是非常有用的"。在这样做的过程中,该团队现在又发现了25个FRB源,使已知的源总数达到50个。这并不意味着他们知道这些源实际上是什么--只是这50个天空区域中的东西正在产生多个FRB。但是这些额外的数据应该对揭开这个谜团有很大的帮助。"这些新发现将使科学界能够在整个电磁波谱中奇妙地研究更多的重复性FRB,并帮助回答该领域的一个主要的开放问题:重复和非重复的FRB是否来自不同的群体?"该研究的作者AaronPearlman说。事实上,新数据的一个含义可能是,不存在一次性的FRB--只有重复的爆发,我们只是没有观察足够长的时间来看到重演。这确实符合目前这个谜团的主要嫌疑人的做法:磁星,即恒星变成超新星后留下的极其密集、高度磁化的残留物。几年前,我们银河系的一个磁星被发现发出可疑的类似FRB的无线电信号。我们需要进行更多的观测,而这批新的数据应该对此有所帮助。这项研究发表在《天体物理学杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1357947.htm手机版:https://m.cnbeta.com.tw/view/1357947.htm

封面图片

Saab伪装遮蔽网可阻挡雷达感知 但GPS和无线电信号畅行无阻

Saab伪装遮蔽网可阻挡雷达感知但GPS和无线电信号畅行无阻ULCAS具有彩色图案和3D表面结构,可以让其下方的一队士兵融入树林中,同时还能阻挡红外线以阻止热寻传感器,有趣的是,这种材料及其晶格图案旨在吸收和衰减来自地面、空中和天基系统的雷达信号,从而使探测或识别网络下的物体变得更加困难。相信我们,那里有一个ULCASFSS但这种遮蔽网也汇屏蔽了GPS和无线电通信系统。这意味着,如果小队想要找出它的位置或接收总部的命令,他们就必须在网外安装天线。用雷达术语来说,这就像镜子反光一样强烈。为了克服这个问题,应潜在客户的要求,Saab的Barracuda业务部门修改了ULCAS网络,创建了ULCAS频率选择表面(FSS)系统。它使用一种新的晶格图案,专注于电磁频谱的高端,以衰减1至100GHz范围内的高频雷达信号,但允许GPS和无线电的低频信号通过。萨博表示,该技术可以进行修改以适应特定的应用,包括扭转衰减的影响以允许雷达信号通过,但不允许无线电信号通过,因此该网络可用于隐藏雷达和防空系统。下面的视频介绍了ULCASFSS。...PC版:https://www.cnbeta.com.tw/articles/soft/1383227.htm手机版:https://m.cnbeta.com.tw/view/1383227.htm

封面图片

天文学家从Ia型超新星探测到前所未见的无线电波

天文学家从Ia型超新星探测到前所未见的无线电波伴星中的富氦物质吸积到白矮星上的图像。在爆炸之前,大量物质从伴星中剥离。研究小组希望弄清发射的强射电波与这种剥离物质之间的关系。资料来源:AdamMakarenko/W.M.凯克天文台孤独的白矮星不会爆炸,因此人们认为来自邻近伴星的质量吸积在引发爆炸中起了作用。吸积的物质是伴星的外层,因此通常主要由氢组成,但人们认为白矮星也有可能从失去外层氢的伴星吸积氦。当白矮星从伴星上剥离物质时,并不是所有的物质都落到了白矮星上;有些物质会在双星系统周围形成环绕星物质云。当白矮星在周星体物质云中爆炸时,预计爆炸产生的冲击波穿过周星体物质会激发原子,使它们发出强烈的无线电波。然而,尽管已经观测到许多Ia型超新星在星周物质云中爆炸,但迄今为止,天文学家还没有观测到与Ia型超新星相关的无线电波辐射。双星系统的艺术印象:一颗紧凑的白矮星从一个富含氦的供体伴星中吸收物质,周围是高密度的尘埃状周星体物质。正是爆炸后的恒星和伴星残留物质的相互作用,才产生了强烈的射电信号,并在SN2020eyj的光学光谱中形成了明显的氦线。资料来源:AdamMakarenko/W.M.凯克天文台一个由斯德哥尔摩大学和日本国家天文台(NAOJ)成员组成的国际研究小组对一颗于2020年爆炸的Ia型超新星进行了详细观测。他们发现,这颗超新星被主要由氦组成的星周物质所包围,并成功探测到了来自超新星的无线电波。将观测到的射电波强度与理论模型进行比较后发现,原初白矮星每年以约为太阳质量1/1000的速度吸积物质。这是第一颗经证实的由伴星质量吸积引发的Ia型超新星,伴星的外层主要由氦组成。这次对富氦Ia型超新星无线电波的观测有望加深我们对Ia型超新星爆炸机制和爆炸前条件的理解。现在,达到团队计划搜寻其他Ia型超新星的射电辐射,以阐明导致爆炸的演化过程。这些结果以Kool等人"Aradio-detectedTypeIasupernovawithhelium-richcircumstellarmaterial"为题发表在《自然》(Nature)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1385043.htm手机版:https://m.cnbeta.com.tw/view/1385043.htm

封面图片

加拿大科学家在遥远的星系中探测到80亿年前的无线电信号

加拿大科学家在遥远的星系中探测到80亿年前的无线电信号这一发现是惊人的,因为据信它所来自的星系在宇宙只有49亿年的时候就已经存在了--这使得这个破纪录的无线电信号的来源有88亿年的历史。科学家们使用了引力透镜来探测并跟踪信号回到其源星系,透镜的放大倍数是30倍,这使得该小组能够看穿宇宙的高红移。此外,该小组观察到,该星系的原子氢质量是其恒星质量的两倍。在这张光学/中红外组合图像中,M74在最亮的时候闪闪发光,其数据来自NASA/ESA哈勃太空望远镜和NASA/ESA/CSA詹姆斯-韦伯太空望远镜。图片来源:欧空局/韦伯,NASA和CSA,J.Lee和PHANGS-JWST团队;欧空局/哈勃和NASA,R.Chandar这些发现发表在《皇家天文学会月刊》上,它们表明在远距离观察星系中的原子气体的总体可行性。它还可以为将来用正在使用和即将使用的低频射电望远镜探测中性气体的宇宙演变打开新的大门。参与这项研究的天文学家与加拿大的麦吉尔大学以及班加罗尔的科学研究所(IISc)合作。该团队使用了来自浦那的巨米波射电望远镜(GMRT)的数据。这个仪器使研究小组能够探测到来自遥远星系的破纪录的无线电信号,使研究人员能够更深入地挖掘这一发现。通过探测这类破纪录的无线电信号,我们也许能够利用类似的事例来更彻底地探索早期宇宙的奥秘。...PC版:https://www.cnbeta.com.tw/articles/soft/1339755.htm手机版:https://m.cnbeta.com.tw/view/1339755.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人