新研究介绍了一种通过尿液检测衰老细胞的新方法

新研究介绍了一种通过尿液检测衰老细胞的新方法瓦伦西亚理工大学(UniversitatPolitècnicadeValència)、瓦伦西亚大学(UniversitatdeValència)、CIBER生物工程、生物材料和纳米医学部(CIBER-BBN)、神经退行性疾病部(CIBER-NED)以及普林西比-费利佩研究中心(CIPF)的研究人员通力合作,开发出了一种用于检测尿液中衰老细胞的创新探针。这一突破可以加深我们对衰老过程的了解,有助于监测和开发新的策略来应对与衰老相关的退化性疾病。该研究成果发表在《自然通讯》(NatureCommunications)上。研究人员解释说,衰老的标志之一是大多数器官中衰老细胞的出现频率增加,从而导致组织功能障碍。这些细胞的存在还与许多与衰老相关的疾病有关。"细胞衰老的主要目的是防止可能导致癌症的受损细胞增殖。然而,当损伤持续存在或在衰老过程中,衰老细胞会异常积累,影响组织功能并加速衰老。这就是为什么必须创建新的系统来轻松有效地检测这些细胞,"UPV分子识别研究和技术开发大学间研究所(IDM)副所长兼CIBER-BBN科学主任RamónMartínezMáñez说。研究人员。图片来源:UPV将探针注射到小鼠体内后,探针会与衰老细胞中特别丰富的一种酶发生作用,产生一种荧光化合物,并迅速随尿液排出体外。"根据尿液中信号的强度,我们可以知道机体内衰老细胞的负担,"紫外线研究中心副主任IsabelFariñas和CIPF的研究员MarOrzáez指出。在研究中,他们还监测了使用消除衰老细胞并能使组织恢复活力的药物进行衰老治疗的情况。他们观察到,尿液中信号的强度与动物衰老程度的降低以及与年龄有关的焦虑的减少有关。"给药后,会释放出一种荧光团,最终由肾脏排出体外,可以通过尿液进行测量。荧光团的强度表明细胞衰老负荷的水平,我们已经看到,这与衰老过程中与年龄相关的焦虑和衰老治疗有关,"紫外线公司的伊莎贝尔-法里纳斯(IsabelFariñas)和CIBERNED的副主任解释说。来自瓦伦西亚理工大学、瓦伦西亚大学、CIBER-BBN、CIBERNED和PríncipeFelipe研究中心的研究小组取得的成果为更好地了解衰老及其对健康的影响开辟了一条途径。"拉蒙-马丁内斯-马涅斯总结说:"它可以帮助我们开发出更有效的方法来解决与衰老有关的问题,并开发出简便的泌尿治疗方法来消除或减少细胞衰老,甚至是人类的衰老。...PC版:https://www.cnbeta.com.tw/articles/soft/1426684.htm手机版:https://m.cnbeta.com.tw/view/1426684.htm

相关推荐

封面图片

DNA“捕获与释放”的新方法可用于脑癌的尿液检测

DNA“捕获与释放”的新方法可用于脑癌的尿液检测 由日本名古屋大学领导的一组研究人员开发了一种液体活检方法,分析尿液中是否存在DNA突变,这些突变表明存在神经胶质瘤(一种常见的脑肿瘤)。神经胶质瘤起源于大脑的神经胶质细胞,神经胶质细胞包围并支持神经细胞或神经元。它们约占所有脑肿瘤的三分之一。近年来,游离DNA(cfDNA)已成为诊断癌症和提供预后信息的多功能生物标志物。当肿瘤细胞分裂并导致健康细胞死亡时,cfDNA会释放到血液和其他体液中。由于癌细胞的分裂速度比健康细胞快得多,人体的白细胞无法有效清除它们,因此它们最终会通过尿液排出体外。“这些细胞的检测作为一种非侵入性的癌症检查方法已获得美国食品和药物管理局的批准,用于癌症筛查、诊断、预后以及监测癌症进展和治疗反应,”TakaoYasui说,他是一名癌症研究人员。该研究的通讯作者。“然而,一个主要瓶颈是缺乏从尿液中有效分离cfDNA的技术,因为排出的cfDNA可能很短、碎片化且浓度低。”为了解决这个问题,研究人员采用了“捕获后释放”的方法。首先,在“捕获阶段”,氧化锌(ZnO)纳米线从尿液样本中捕获cfDNA。选择ZnO是因为它的表面附着水分子,然后与cfDNA形成氢键。然后,在“释放”中,结合的cfDNA被洗掉并进行分析。研究人员在cfDNA中寻找的是IDH1突变,这是在神经胶质瘤中发现的一种特征性基因突变。他们使用新技术在术前测试了12名恶性脑肿瘤患者的尿液样本,发现他们的纳米线装置可以有效地从尿液中分离出cfDNA,并仅使用极少量的尿液即可检测到IDH1突变。“我们成功地分离了尿液cfDNA,这对于传统方法来说是极其困难的,”Yasui说。“当我们提取cfDNA时,我们检测到了IDH1突变,这是神经胶质瘤中发现的一种特征性基因突变。这让我们兴奋不已,因为这是第一份从小至0.5mL[0.01floz]的尿液样本中检测到IDH1突变的报告。”研究人员表示,他们的纳米线检测方法可用于进行早期癌症诊断,并且该方法可适用于测试其他类型的肿瘤。“这项研究通过使用化学、生物、医学和纳米技术,克服了目前使用的方法的缺点,为尿液cfDNA的临床使用提供了最先进的方法,特别是作为一种分析工具,促进早期诊断癌症,”Yasui说。“虽然我们测试了神经胶质瘤,但这种方法为检测肿瘤突变开辟了新的可能性。如果我们知道要寻找的突变类型,我们就可以轻松地应用我们的技术来检测其他类型的肿瘤,特别是检测那些无法通过常规方法分离的肿瘤。”该研究发表在《生物传感器和生物电子学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1368929.htm手机版:https://m.cnbeta.com.tw/view/1368929.htm

封面图片

研究:一种糖尿病药物有助清除实验鼠衰老细胞

研究:一种糖尿病药物有助清除实验鼠衰老细胞日本顺天堂大学日前发布新闻公报说,该校研究人员等参与的一个团队成功利用一种糖尿病药物清除了实验鼠体内的一些衰老细胞,不仅改善了实验鼠的代谢异常、动脉硬化等症状,还延长了患早衰症实验鼠的寿命。据公报介绍,团队给实验鼠喂食高脂肪食物令其发胖,然后用钠-葡萄糖协同转运蛋白2抑制剂(SGLT-2抑制剂)进行短期治疗。结果显示,积蓄在实验鼠内脏脂肪中的衰老细胞被清除,内脏脂肪的炎症、糖代谢紊乱和胰岛素抵抗也都得到了改善。

封面图片

麻省理工学院革新细胞成像技术:观察活细胞内部活动的新方法

麻省理工学院革新细胞成像技术:观察活细胞内部活动的新方法活细胞会受到多种分子信号的轰击,这些信号会影响细胞的行为。如果能够测量这些信号以及细胞如何通过下游分子信号网络对这些信号做出反应,就能帮助科学家更多地了解细胞是如何工作的,包括当细胞衰老或患病时会发生什么。目前,这种全面的研究还不可能实现,因为目前的细胞成像技术仅限于同时对细胞内的少数不同分子类型进行成像。然而,麻省理工学院的研究人员开发出了一种替代方法,可以一次观察多达七种不同的分子,甚至有可能观察到比这更多的分子。分子成像技术的突破"在生物学中,有许多例子表明,一个事件会引发一长串下游事件,进而导致特定的细胞功能,"谭以骅神经技术教授爱德华-博伊登(EdwardBoyden)说。"这是如何发生的?这可以说是生物学的基本问题之一,因此我们想知道,能不能简单地观察它的发生?"新方法利用了以不同速率闪烁的绿色或红色荧光分子。通过对细胞进行数秒、数分钟或数小时的成像,然后利用计算算法提取每个荧光信号,就能跟踪每个目标蛋白质随时间变化的数量。利用四种可切换荧光团,麻省理工学院的研究人员能够标记并成像这些细胞内的四种不同激酶(前四行)。下一行中,细胞核被标记为蓝色。图片来源:研究人员提供博伊登是这项研究的资深作者,他也是麻省理工学院生物工程教授、脑与认知科学教授、霍华德-休斯医学研究所研究员、麻省理工学院麦戈文脑研究所和科赫综合癌症研究所成员,以及杨丽莎仿生学中心(K.LisaYangCenterforBionics)的联合主任。麻省理工学院博士后钱勇是论文的第一作者。荧光信号的进步用荧光蛋白标记细胞内的分子使研究人员能够大量了解许多细胞分子的功能。这类研究通常使用绿色荧光蛋白(GFP),该蛋白在20世纪90年代首次用于成像。从那时起,又开发了几种能发出其他颜色光的荧光蛋白用于实验。然而,典型的光学显微镜只能分辨出其中的两三种颜色,研究人员只能窥见细胞内发生的整体活动。如果能追踪更多的标记分子,研究人员就能测量脑细胞在学习过程中对不同神经递质的反应,或者研究促使癌细胞转移的信号。"理想情况下可以实时观察细胞内的信号波动,然后了解它们之间的关系。这将告诉我们细胞是如何计算的,"博伊登说。"问题是,无法同时观察很多东西。"2020年,博伊登的实验室开发出一种方法,通过将发光报告器瞄准细胞内的不同位置,同时对细胞内的多达五种不同分子进行成像。这种方法被称为"空间多路复用",它能让研究人员分辨出不同分子的信号,即使它们发出的荧光颜色相同。在这项新研究中,研究人员采用了一种不同的方法:他们没有根据信号的物理位置来区分信号,而是创建了随时间变化的荧光信号。这种技术依赖于"可切换荧光团"--能以特定速率开启和关闭的荧光蛋白。在这项研究中,博伊登和他的研究小组成员确定了四种绿色可切换荧光团,然后又设计了另外两种,它们都以不同的速率开启和关闭。他们还确定了两种以不同速率开关的红色荧光蛋白,并设计了另外一种红色荧光团。每种可切换的荧光团都可以用来标记活细胞内不同类型的分子,如酶、信号蛋白或细胞骨架的一部分。在对细胞进行数分钟、数小时甚至数天的成像后,研究人员使用一种计算算法,从每种荧光团中挑选出特定信号,这类似于人耳挑选出不同频率的声音。"在交响乐团中,有长笛等高音乐器,也有大号等低音乐器。中间是小号等乐器。"博伊登说:"它们都有不同的声音,而我们的耳朵会把它们分拣出来。"研究人员用来分析荧光团信号的数学技术被称为线性非混合法。这种方法可以提取不同的荧光团信号,类似于人耳使用一种称为傅立叶变换的数学模型来提取乐曲中的不同音高。分析完成后,研究人员就能看到在整个成像过程中,细胞中每个荧光标记分子出现的时间和位置。成像本身只需一台简单的光学显微镜即可完成,无需专业设备。探索生物现象在这项研究中,研究人员通过标记哺乳动物细胞中参与细胞分裂周期的六种不同分子,展示了他们的方法。这样,他们就能确定细胞周期中依赖细胞周期蛋白的激酶的水平是如何变化的。研究人员还发现,他们还能标记其他类型的激酶,这些激酶几乎涉及细胞信号传导的方方面面,还能标记细胞结构和细胞器,如细胞骨架和线粒体。除了使用在实验室培养皿中生长的哺乳动物细胞进行实验外,研究人员还证明这种技术可以在斑马鱼幼体的大脑中发挥作用。研究人员表示,这种方法有助于观察细胞如何对营养物质、免疫系统因子、激素或神经递质等任何输入做出反应。它还可以用来研究细胞如何对基因表达的变化或基因突变做出反应。所有这些因素都在生长、衰老、癌症、神经变性和记忆形成等生物现象中发挥着重要作用。博伊登说:"我们可以认为所有这些现象都代表了一类普遍的生物问题,即某些短期事件--如摄入某种营养物质、学习某些知识或受到感染--会产生长期变化。"除了进行这些类型的研究,博伊登的实验室还在努力扩大可切换荧光团的范围,以便研究细胞内的更多信号。他们还希望调整该系统,使其能用于小鼠模型。...PC版:https://www.cnbeta.com.tw/articles/soft/1401541.htm手机版:https://m.cnbeta.com.tw/view/1401541.htm

封面图片

新研究发现细胞膜损伤会导致细胞衰老

新研究发现细胞膜损伤会导致细胞衰老日本科研人员的一项新研究显示,细胞膜受损除了导致细胞的死亡或自我修复外还有第三种可能——导致细胞衰老。新华社报道,细胞膜是细胞的一层厚约五纳米的“防护外壳”,相当于肥皂泡厚度的二十分之一。这层薄膜易受机体活动损伤,也具有自我修复能力。一直以来,人们认为细胞在细胞膜受损后,要么修复要么死亡。日本冲绳科学技术大学院大学的研究人员开发了一种诱导芽殖酵母细胞和人体成纤维细胞的细胞膜损伤的方法。通过全基因组测序筛选等检测,研究人员发现细胞膜损伤限制了芽殖酵母细胞的复制能力;在成纤维细胞中,细胞膜损伤会导致细胞过早衰老。普通细胞的分裂能力是有限的——大约分裂50次后就无法再继续,随后便进入细胞衰老状态。此外,在实验室环境中,脱氧核糖核酸(DNA)损伤、端粒缩短、致癌基因激活等因素也会诱发细胞衰老。长期以来,研究界一直认为细胞衰老其实都是通过激活DNA损伤反应来诱导的。然而,研究人员在此次研究中发现,细胞膜损伤导致细胞衰老的机制并不通过常规的激活DNA损伤反应来诱导,而是独立于此的另外机制,且细胞膜损伤导致的细胞衰老过程比激活DNA损伤反应诱导的衰老过程慢。近年的研究显示,清除动物和人体内的衰老细胞可以改善与年龄相关的疾病。研究人员认为,该研究结果有助于制定未来增进健康、延年益寿的策略。这一研究成果发表在新一期英国《自然·老化》杂志上。2024年2月27日12:18PM

封面图片

一种治疗罕见的复杂癌症的新方法

一种治疗罕见的复杂癌症的新方法由MortenScheibye-Knudsen副教授领导的一项新研究发现,抑制plk1基因可以帮助治疗病情最严重的肉瘤患者,这些患者的癌细胞具有高表达的cep135蛋白。这一突破可能在未来5-10年内为肉瘤的新的、更有效的治疗方法铺平道路。然而,最近的一项研究可能已经发现了一种新的a治疗方法,可以帮助最病态的肉瘤患者。"我们已经了解到,癌细胞高度表达cep135蛋白的肉瘤患者情况更差。但是抑制一种叫做plk1的基因也能抑制肉瘤细胞的生长,这表明我们可以有针对性地治疗病情最严重的肉瘤患者,"负责这项新研究的细胞和分子医学系健康老化中心的MortenScheibye-Knudsen副教授说。确定肉瘤患者预后的方法已经有了,不同形式的治疗方法也是如此。但新的研究确定了一种新的方法。肉瘤是在i.a.骨骼、肌肉或脂肪组织中发现的癌症肿瘤。有两种主要类型:骨肉瘤和软组织肉瘤(肌肉、脂肪组织、结缔组织、血管和神经纤维)。肉瘤影响1%的癌症患者。在丹麦,每年约有45人被诊断患有骨肉瘤,220人被诊断患有软组织肉瘤。被诊断为骨肉瘤的成年人有60%的五年生存率,而被诊断为骨肉瘤的成年人有50-70%的五年生存率。"这是一种新的分层方法,可能是治疗肉瘤的一种新的、更好的方法。而另一种方法的引入对病人来说总是好消息。因为没有两种癌症是相同的。理想情况下,治疗应该总是根据病人的具体情况而定,"MortenScheibye-Knudsen强调说。他希望其他能够获得必要测试设施的研究人员能够更详细地研究他的结果,并最终设计一种新的治疗方法。如果该方法被证明是有效的,他相信在5到10年内,患者可能会得到一种新的治疗。莫滕-谢贝-克努森和他的同事们一开始就研究了患有罕见的神经系统疾病沃纳综合症、奈梅亨断裂综合症和共济失调-泰兰吉特综合症的患者。这些患者会出现早期衰老的症状,如白发、皱纹和脂肪组织的流失--而且他们在早期就有患癌症的高风险。"与年龄相关的疾病,如癌症,是我作为健康老龄化中心的研究人员的主要兴趣领域之一。随着我们年龄的增长,身体发生了很多事情,确定因果关系可能很困难。但是在患有维尔纳综合症等疾病的人身上,我们更容易看到哪些基因负责哪些过程。"MortenScheibye-Knudsen说:"可以这么说,这给了我们一个分子处理的方法。"为了确定这些病人为什么会在早期就患上癌症,研究人员比较了这三种疾病的基因表达。在这里,他们与InsilicoMedicine公司合作,该公司的大型Pandaomics平台使他们有可能识别成千上万种不同疾病的基因突变。结果发现,cep135是这三种疾病的癌症基因的一个共同点。"这使我们研究了各种癌症的基因表达,我们了解到cep135与i.a.肉瘤的高死亡率有关,但也与膀胱癌有关。肉瘤与众不同,因为许多韦纳氏综合症患者都会患上肉瘤,"MortenScheibye-Knudsen解释说。最后,研究人员试图找到抑制肉瘤的方法。Cep135不是一个有用的目标,因为它是一种所谓的结构蛋白,很难成为目标。相反,研究人员了解到,通过抑制plk1基因,他们能够瞄准肉瘤。"这项研究表明,我们可以利用表现出加速老化的遗传性疾病来确定新的治疗目标。"MortenScheibye-Knudsen说:"在这项研究中,我们调查了癌症,但该方法原则上可用于所有与年龄有关的疾病,如痴呆症、心血管疾病和其他。"...PC版:https://www.cnbeta.com.tw/articles/soft/1356641.htm手机版:https://m.cnbeta.com.tw/view/1356641.htm

封面图片

研究人员开发出对抗疟疾抗药性的新方法

研究人员开发出对抗疟疾抗药性的新方法疟疾仍然是全球最致命的传染病之一。抗药性疟原虫的出现要求我们不断开发新的药物。SvetlanaB.Tsogoeva教授领导的埃尔兰根-纽伦堡弗里德里希-亚历山大大学(Friedrich-Alexander-UniversitätErlangen-Nürnberg,FAU)的研究小组现已将抗疟疾药物青蒿素与香豆素(与青蒿素一样,香豆素也存在于植物中)结合在一起,并从这两种生物活性物质中开发出一种自发荧光化合物。这种自发荧光尤其具有优势,因为它可用于活细胞成像,并能以精确的时间顺序显示药物是如何起作用的。工作小组还发现,自发荧光的青蒿素-香豆素混合物能够消灭一种名为棕榈疟原虫的抗药性疟疾病原体。他们将研究结果发表在《化学科学》杂志上。青蒿素是从一种名为黄花蒿(ArtemisiaannuaL.)的植物中提取的一种高效、常用的疟疾药物成分。香豆素是一种次生植物化合物,存在于多种植物中。在开发抗疟疾药物的过程中,活性物质会被贴上荧光标签,以便利用成像技术,按照精确的时间顺序确定它们是如何对疟疾病原体发挥作用的。青蒿素已经使用了这种荧光标记。不过,使用荧光物质标记的一大缺点是会改变药物的作用方式。例如,这意味着在某些情况下,感染疟疾的细胞在荧光标记后对青蒿素等药物的吸收与之前不同。药物的溶解度也会发生变化。自发荧光混合物的开发避免了这一问题,这种混合物由两种或两种以上的基本化合物组成,本身具有荧光,其作用模式可通过成像技术精确观察。有机化学教席的Tsogoeva教授领导的团队决定将青蒿素与生物活性香豆素结合起来,因为香豆素衍生物也具有抗疟疾特性。香豆素衍生物还可以很容易地进行化学变化,使其具有极强的荧光性。研究人员发现,在感染了恶性疟原虫的活红细胞中,不仅可以观察到这种首创的自发荧光青蒿素-香豆素混合物的作用模式,而且还可以观察到青蒿素-香豆素混合物的生物活性。BarbaraKappes教授(巴西联邦大学化学与生物工程系)和DiogoR.M.Moreira博士(巴西巴伊亚州Fiocruz市GonçaloMoniz研究所)共同发现,这种活性制剂在体外(试管内)对恶性疟原虫菌株非常有效,而这些菌株对氯喹和其他疟疾药物具有抗药性。最重要的是,这种新化合物在小鼠模型体内对疟疾病原体也非常有效。随着首个自发荧光青蒿素-香豆素混合物的问世,FAU的研究人员希望他们已经为开发更多治疗疟疾的自发荧光药物奠定了基础,并在克服治疗疟疾的多重抗药性方面取得了重大进展。...PC版:https://www.cnbeta.com.tw/articles/soft/1398819.htm手机版:https://m.cnbeta.com.tw/view/1398819.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人