物理学家发明测量单个原子三维位置的巧妙新方法

物理学家发明测量单个原子三维位置的巧妙新方法新方法可通过单个图像确定原子的所有三个空间坐标。这种由波恩大学和布里斯托尔大学开发的方法是基于一种巧妙的物理原理。这项研究最近发表在专业期刊《物理评论A》上。测量第三维度的挑战在生物课上用显微镜观察过植物细胞的人可能都能回忆起类似的情形。很容易看出,某个叶绿体位于细胞核的上方和右侧。但它们是否位于同一平面上呢?然而,一旦调整显微镜的焦距,就会发现细胞核的图像变得更加清晰,而叶绿体的图像却变得模糊不清。其中一个一定比另一个高一点,一个比另一个低一点。不过,这种方法无法精确显示它们的垂直位置。实际情况就是这样:各种"哑铃"的旋转方向不同,表明原子位于不同的平面上。图片来源:IAP/波恩大学如果要观察单个原子而不是细胞,原理也非常相似。所谓的量子气体显微镜可用于此目的。它可以直接确定原子的x坐标和y坐标。然而,要测量其Z坐标(即到物镜的距离)则要困难得多:为了确定原子位于哪个平面上,必须拍摄多幅图像,并在不同平面上移动焦点。这是一个复杂而耗时的过程。把圆点变成哑铃波恩大学应用物理研究所(IAP)的TangiLegrand解释说:"我们现在已经开发出一种方法,可以一步完成这一过程。为了实现这一目标,我们使用了一种早在上世纪90年代就已在理论上被人们所熟知,但尚未在量子气体显微镜中使用过的效应"。要对原子进行实验,首先必须将其大幅冷却,使其几乎不动。然后,可以将它们困在激光的驻波中。然后,它们就会滑入波谷中,就像鸡蛋坐在鸡蛋盒里一样。一旦被困住,为了显示它们的位置,就将它们暴露在另一束激光下,这束激光会刺激它们发光。由此产生的荧光在量子气体显微镜下显示为一个略微模糊的圆形斑点。量子气体显微镜产生的原子图像通常是一个圆形、略微模糊的斑点。研究人员将其扭曲成哑铃状(图片显示的是理论预测)。哑铃指向的方向表示z坐标。图片来源:IAP/波恩大学安德烈亚-阿尔贝蒂博士解释说:"我们现在已经开发出一种特殊的方法,可以使原子发出的光的波面变形。变形的波面在照相机上产生了一个围绕自身旋转的哑铃形状,而不是典型的圆形斑点。这个哑铃指向的方向取决于光线从原子到照相机的距离"。这位研究员目前已从IAP转到位于加兴的马克斯-普朗克量子光学研究所,他也参与了这项研究。"因此,哑铃的作用有点像罗盘上的指针,让我们可以根据它的方向读出z坐标,"迪特尔-梅斯赫德(DieterMeschede)博士说。波恩大学跨学科研究领域"物质"的成员之一。对量子力学实验非常重要通过这种新方法,只需一张图像就能精确测定原子在三维空间中的位置。例如,如果你想用原子进行量子力学实验,这一点就非常重要,因为通常必须能够精确控制或跟踪原子的位置。这样,研究人员就可以使原子以所需的方式相互影响。此外,这种方法还可用于帮助开发具有特殊特性的新型量子材料。布里斯托尔大学的CarrieWeidner博士解释说:"例如,我们可以研究原子按一定顺序排列时会产生哪些量子力学效应。"这将使我们能够在一定程度上模拟三维材料的特性,而无需合成它们"。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423110.htm手机版:https://m.cnbeta.com.tw/view/1423110.htm

相关推荐

封面图片

物理学家发现原子核基态的分子结构

物理学家发现原子核基态的分子结构中国科学院近代物理研究所(IMP)的科学家及其合作者最近在原子核基态中发现了一种分子型结构。该研究成果发表在《物理评论快报》上,并作为"物理学特写"文章进行了重点报道。原子核是一个由质子和中子组成的量子多体系统,小得令人难以置信(只有原子的万分之一),但它却容纳了原子总质量的99.9%以上。核子之间的相互作用产生了各种有趣的核结构,从球形核到变形核,甚至是表面密度稀疏的中子晕。在这些结构中出现的团簇结构是一个引人入胜的现象。反运动学中的簇敲除反应示意图。资料来源:李鹏杰团簇结构的意义原子核的基态很少出现簇状结构。关于基态团簇结构的讨论可以追溯到1938年,当时理论物理学家通过分析α共轭核的结合能,提出在铍-8、碳-12和氧-16等原子核的基态中可能存在类似α分子的团簇结构。然而,由于经典壳模型的单粒子描述很受欢迎,这一理论假设仍未得到验证。IMP的科学家及其合作者利用一种涉及逆运动学敲除反应的新颖实验方法,验证了富中子原子核铍-10的基态存在分子型结构。该实验在日本理化学研究所西奈中心的放射性同位素束工厂(RIBF)进行。在实验中,铍-10的次级束以一半光速轰击一个2毫米厚的固体氢靶。束缚在铍-10原子核内的α原子团被质子击出,几乎没有动量转移到残余原子核上,从而保留了铍-10基态原子团结构的信息。铍-10原子核的类分子结构。资料来源:IMP李鹏杰证实长期存在的假设实验结果表明,敲除反应的实验截面与微观模型下的理论预测之间存在显著的一致性。这一验证支持了关于铍-10基态分子态结构的长期假说,即铍-10形成了一个α-α哑铃形内核,两个价中子垂直于内核轴旋转。论文第一作者、来自IMP的李鹏杰博士说:"类似的结构在原子尺度上也能发现,但在原子核的基态中却异常罕见。"这项研究首次为原子核基态分子态结构的理论描述提供了实验证据,并为进一步探索富中子核基态α簇结构的演化铺平了道路。...PC版:https://www.cnbeta.com.tw/articles/soft/1401029.htm手机版:https://m.cnbeta.com.tw/view/1401029.htm

封面图片

物理学家创下原子量子计算机世界纪录:实现超过1000量子位

物理学家创下原子量子计算机世界纪录:实现超过1000量子位扩大量子系统的规模对于推进量子计算至关重要,因为系统越大,其优势就越明显。达姆施塔特工业大学的研究人员在实现这一目标方面取得了重大进展。他们的研究成果现已发表在著名期刊《光学》(Optica)上。基于二维光镊阵列的量子处理器是开发量子计算和模拟的最有前途的技术之一,可在未来实现非常有益的应用。从药物开发到优化交通流的各种应用都将受益于这项技术。迄今为止,这些处理器已经能够容纳几百个单原子量子系统,其中每个原子代表一个量子比特或量子比特,是量子信息的基本单位。为了取得进一步的进展,有必要增加处理器中量子比特的数量。达姆施塔特工业大学物理系"原子-光子-量子"研究小组的格哈德-伯克尔(GerhardBirkl)教授领导的团队现已实现了这一目标。在2023年10月初首次发表在arXiv预印本服务器上、现在又经过科学同行评审发表在著名期刊《光学》(Optica)上的研究文章中,该团队报告了世界上首次成功实现在一个平面上包含1000多个原子量子比特的量子处理架构的实验。Birkl谈到他们的成果时说:"我们非常高兴能够率先突破1,000个可单独控制的原子量子比特的大关,因为还有很多其他优秀的竞争对手紧随其后。"研究人员在实验中证明,他们将最新的量子光学方法与先进的微光学技术相结合的方法使他们能够大大提高目前对可访问量子比特数量的限制。这是通过引入"量子比特增殖"的新方法实现的。这种方法使他们克服了激光器性能有限对可用量子比特数量的限制。1305个单原子量子比特被装载到一个具有3000个陷阱位点的量子阵列中,并重新组装成具有多达441个量子比特的无缺陷目标结构。通过并行使用多个激光源,这一概念突破了迄今为止几乎无法逾越的技术界限。对于许多不同的应用来说,1000量子比特被视为一个临界值,量子计算机所承诺的效率提升可以在这个临界值上得到首次展示。因此,世界各地的研究人员一直在为率先突破这一门槛而努力。最近发表的研究成果表明,对于原子量子比特,Birkl教授领导的研究小组在世界范围内首次实现了这一突破。该科学出版物还介绍了激光源数量的进一步增加将如何在短短几年内使量子比特数量达到10000甚至更多。编译来源:ScitechDailyDOI:doi:10.1364/OPTICA.513551...PC版:https://www.cnbeta.com.tw/articles/soft/1429699.htm手机版:https://m.cnbeta.com.tw/view/1429699.htm

封面图片

物理学家实现分子的量子纠缠

物理学家实现分子的量子纠缠物理学家首次实现了对分子的量子纠缠。这一突破可能有助于推动量子计算的实用化。论文发表在《科学》期刊上。实现可控的量子纠缠一直是一大挑战,这次实验之前分子的可控量子纠缠一直无法实现。普林斯顿大学的物理学家找到了方法控制单个分子诱导其进入到互锁量子态。研究人员相信相比原子,分子具有优势,更适合量子信息处理和复杂材料量子模拟等应用。相比原子,分子有更多的量子自由度,能以新方式交互。论文合作者YukaiLu指出这意味着存储和处理量子信息的新方法。来源,,频道:@kejiqu群组:@kejiquchat

封面图片

物理学家以前所未有的精确度测量原子核的波状振动

物理学家以前所未有的精确度测量原子核的波状振动研究人员在科学杂志《自然-物理》上发表的论文中断言,他们的测量结果是迄今为止对核材料波状运动最精确的确认。此外,他们没有发现任何证据表明原子核之间的作用力有任何偏差。近100年来,简单原子一直是精密实验和理论研究的对象,其中对氢原子--只有一个电子的最简单原子--的描述和测量工作堪称开创性。目前,氢原子能量及其电磁频谱是最精确计算的束缚量子系统能量。由于还可以对频谱进行极其精确的测量,因此将理论预测与测量结果进行比较可以检验预测所依据的理论。实验示意图:在离子阱(灰色)中,激光波(红色)被发送到HD+分子离子(黄色/红色点对)上,引起量子跃迁。这反过来又导致分子离子的振动状态发生变化。这一过程与光谱线的出现相对应。激光波长经过精确测量。图片来源:HHU/SorooshAlighanbari此类测试非常重要。全世界的研究人员都在寻找暗物质存在可能产生的新物理效应的证据--尽管至今未果。这些效应将导致测量与预测之间的差异。与氢原子相比,最简单的分子在很长一段时间内都不是精确测量的对象。然而,由哈佛大学实验物理学系主任斯蒂芬-席勒教授(StephanSchillerPh.D.)领导的研究小组却致力于这一课题的研究。在杜塞尔多夫,该研究小组开展了开创性的工作,开发出了世界上最精确的实验技术。最简单的分子是分子氢离子(MHI):氢分子缺少一个电子,由三个粒子组成。其中一种变体H2+由两个质子和一个电子组成,而HD+则由一个质子、一个氘核(一种较重的氢同位素)和一个电子组成。质子和氘核是带电的"重子",即受到所谓强力作用的粒子。MHI的示意图,这里是一个HD+分子:它由一个氢原子核(p)和一个氘核(d)组成,这两个原子核可以相互旋转和振动。此外,还有一个电子(e)。p和d的运动表现为光谱线的出现。资料来源:HHU/SorooshAlighanbari在分子内部,各成分可以有不同的行为方式:电子围绕原子核运动,而原子核则相互振动或旋转,粒子的行为就像波一样。量子理论详细描述了这些波的运动。不同的运动模式决定了分子的光谱,反映在不同的光谱线上。光谱的产生方式与原子光谱类似,但要复杂得多。目前物理学研究的艺术在于极其精确地测量光谱线的波长,并在量子理论的帮助下极其精确地计算这些波长。如果这两个结果相吻合,就证明了预测的准确性,而如果不吻合,则可能为"新物理学"埋下伏笔。多年来,哈佛大学的物理学家团队不断改进MHI的激光光谱学,开发出各种技术,将光谱的实验分辨率提高了多个数量级。他们的目标是:光谱测量越精确,理论预测就越能得到验证。这样就能发现任何可能的理论偏差,从而为理论的修改提供起点。席勒教授的团队将实验精度提高到了优于理论的水平。为了实现这一目标,杜塞尔多夫的物理学家们将大约100个中等数量的MHI限制在一个超高真空容器的离子阱中,利用激光冷却技术将离子冷却到1毫开尔文的温度。这样就可以非常精确地测量旋转和振动跃迁的分子光谱。继早先对波长为230μm和5.1μm的光谱线进行研究之后,作者现在又在《自然-物理学》上发表了对波长更短的1.1μm光谱线的测量结果。席勒教授说:"实验测定的过渡频率与理论预测一致。结合之前的结果,我们对带电重子的量子运动进行了最精确的检验:任何偏离既定量子定律的情况如果存在,其偏差必须小于千亿分之一。"这一结果也可以用另一种方式来解释:假设除了众所周知的库仑力(带电粒子之间的作用力)之外,质子和氘核之间还可能存在另一种基本力。主要作者SorooshAlighanbari博士说:"这种假设的力可能与暗物质现象有关。我们在测量过程中还没有发现这种力的任何证据,但我们将继续寻找"。...PC版:https://www.cnbeta.com.tw/articles/soft/1374487.htm手机版:https://m.cnbeta.com.tw/view/1374487.htm

封面图片

物理学家成功连接了两个量子物理学的子领域

物理学家成功连接了两个量子物理学的子领域莱斯大学的物理学家已经证明,量子计算所高度追求的不可变拓扑态可以与某些材料中其他可操纵的量子态纠缠在一起。“我们发现令人惊讶的事情是,在一种特殊的晶格中,电子被困住,d原子轨道中电子的强耦合行为实际上就像一些重费米子的f轨道系统一样,”《科学进展》相关研究报告的作者说。这一意想不到的发现为凝聚态物理学的子领域之间架起了一座桥梁,这些子领域专注于量子材料的不同涌现特性。例如,在拓扑材料中,量子纠缠模式产生“受保护的”、不可变的状态,可用于量子计算和自旋电子学。在强关联材料中,数十亿个电子的纠缠会产生非常规超导性和量子自旋液体中持续磁涨落等行为。在这项研究中,斯奇苗和合著者胡浩宇(他的研究小组的前研究生)建立并测试了一个量子模型,以探索“受挫”晶格排列中的电子耦合,就像在具有“平带”特征的金属和半金属中发现的电子耦合,表明电子被卡住并且强相关效应被放大。斯奇苗是莱斯大学物理和天文学HarryC.和OlgaK.Wiess教授,也是莱斯大学量子材料中心主任。图片来源:JeffFitlow/莱斯大学这项研究是斯奇苗持续努力的一部分,他于7月获得了美国国防部著名的万尼瓦尔·布什教员奖学金,以验证控制物质拓扑状态的理论框架。在这项研究中,斯奇苗和胡浩宇表明,来自d原子轨道的电子可以成为晶格中多个原子共享的更大分子轨道的一部分。研究还表明,分子轨道中的电子可能与其他受挫电子纠缠在一起,产生强相关效应,这对于多年来研究重费米子材料的Si来说非常熟悉。“这些完全是d电子系统,”斯奇苗说。“在d电子世界中,就像有一条多车道的高速公路。在f电子世界中,您可以认为电子在两层中移动。一种就像d电子高速公路,另一种就像土路,移动速度非常慢。”Si表示,f电子系统拥有非常清晰的强相关物理例子,但它们并不适合日常使用。“这条土路距离高速公路太远了,”他说。“高速公路的影响非常小,这意味着微小的能量尺度和非常低的物理温度。这意味着需要达到10开尔文左右的温度才能看到耦合的效果。在d电子世界中情况并非如此。在多车道高速公路上,事物之间的耦合非常有效。”即使频带平坦,耦合效率仍然存在。斯将其比作高速公路的一条车道变得像f电子土路一样低效且缓慢。“即使它已经变成了土路,它仍然与其他车道共享地位,因为它们都来自d轨道,”斯说。“它实际上是一条土路,但它的耦合性更强,这转化为更高温度下的物理现象。这意味着我可以拥有所有基于f电子的精致物理学,为此我拥有明确定义的模型和多年研究的大量直觉,但我不必达到10开尔文,而是可以工作例如,200开尔文,甚至可能是300开尔文,或室温。因此,从功能角度来看,它非常有前途。”...PC版:https://www.cnbeta.com.tw/articles/soft/1389679.htm手机版:https://m.cnbeta.com.tw/view/1389679.htm

封面图片

物理学家解开了准晶体形成之谜

物理学家解开了准晶体形成之谜一个由不同大小的环组成的子结构将自己无缝嵌入到一个六边形结构中。资料来源:马丁路德大学哈雷-维滕贝格分校他们的研究解决了从金属氧化物中形成二维准晶体的奥秘,最近发表在《自然通讯》杂志上。"六角形在自然界中经常被发现。最著名的例子是蜂窝,但石墨烯或各种金属氧化物,如氧化钛也形成这种结构。六边形是周期性排列的理想模式,"MLU物理研究所表面和界面物理组的研究员StefanFörster博士解释说。"它们如此完美地结合在一起,没有任何缝隙。"2013年,该小组在铂金基底上沉积了一个含有氧化钛和钡的超薄层,并在超高真空中加热到约1000摄氏度时,有了一个惊人的发现。原子排列成三角形、正方形和菱形,这些三角形、正方形和菱形组合成甚至更大的具有12条边的对称形状。一个具有12倍旋转对称性的结构被创造出来,而不是预期的6倍周期性。根据福斯特的说法,"准晶体被创造出来,具有非周期性的结构。这种结构是由高度有序的基本原子团组成的,即使这种有序性背后的系统性对观察者来说是难以辨别的。"来自哈雷的物理学家们是世界上第一个证明在金属氧化物中形成二维准晶体的人。自他们发现以来,这种准晶体的形成机制仍然令人费解。MLU的物理学家现在与来自哈雷马克斯-普朗克微结构物理研究所、格勒诺布尔-阿尔卑斯大学和美国国家标准与技术研究所(美国盖瑟斯堡)的研究人员合作,解决了这个谜题。利用精心设计的实验、高能计算和高分辨率显微镜,他们表明,高温和钡的存在创造了一个分别有四个、七个和十个原子的钛和氧环的网络。"钡既打破了原子环,又稳定了它们,"领导该联合项目的Förster解释说。"一个钡原子嵌入一个七原子环中,两个嵌入一个十原子环中"。这是可能的,因为钡原子与铂金支撑物发生静电作用,但不与钛原子或氧原子形成化学键。通过他们的最新发现,研究人员所做的不仅仅是澄清了一个基本的物理学问题。Förster说:"现在我们对原子层面的形成机制有了更好的理解,我们可以尝试在其他与应用相关的材料(如金属氧化物或石墨烯)中按需制造这种二维准晶体。我们很高兴能够了解这种特殊的排列方式是否会产生全新的、有用的特性"。这些实验是作为"超周期晶体:结构、动力学和电子特性"项目的一部分进行的,该项目由德国研究基金会和法国国家研究机构资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1345975.htm手机版:https://m.cnbeta.com.tw/view/1345975.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人