科学家设法提高超级计算机模拟准确性 揭开星系形成背后的秘密

科学家设法提高超级计算机模拟准确性揭开星系形成背后的秘密天文学家可以使用超级计算机来模拟星系从138亿年前宇宙大爆炸至今的形成过程。但是,这其中存在许多误差来源。由隆德研究人员领导的一个国际研究小组在八年时间里花费了一亿个计算机小时试图纠正这些错误。为了最大限度地减少误差来源,制作出更精确的模拟结果,由隆德大学的SantiRoca-Fàbrega、首尔国立大学的Ji-hoonKim和加利福尼亚大学的JoelR.Primack领导的来自60所高等院校的160名研究人员通力合作,现在公布有史以来最大规模的模拟对比结果。"要在星系形成理论方面取得进展,对不同模拟的结果和代码进行比较至关重要。"天体物理学研究员桑蒂-罗卡-法布雷加(SantiRoca-Fàbrega)说:"我们现在已经做到了这一点,将世界上最好的星系模拟器背后相互竞争的代码组聚集在一起,进行了一种超级比较。"该合作项目的三篇论文(即CosmoRun模拟)现已发表在《天体物理学杂志》上。在这些论文中,研究人员分析了一个与银河系质量相同的星系的形成过程。模拟基于相同的天体物理学假设,包括宇宙中第一批恒星产生的紫外线背景辐射、气体冷却和加热以及恒星形成过程。模拟宇宙的一部分。资料来源:AGORA协作小组新成果让研究人员得出结论,像银河系这样的圆盘星系在宇宙历史上形成的时间非常早,这与詹姆斯-韦伯望远镜的观测结果是一致的。他们还找到了一种方法,使卫星星系--围绕较大星系运行的星系--的数量与观测结果相一致,最终解决了一个众所周知的问题,即"卫星缺失问题"。此外,研究小组还揭示了星系周围的气体是如何成为逼真模拟的关键,而不是恒星的数量和分布,因为恒星的数量和分布是以前的标准。SantiRoca-Fàbrega说:"这项工作已经持续了八年,需要运行数百次模拟,使用一亿个小时的超级计算设施。"他们的旅程仍在继续,以进一步完善对星系形成的模拟。SantiRoca-Fàbrega和他的同事们希望通过每一项技术成果,为宇宙和星系的诞生与演化这一令人眼花缭乱的谜题增添新的内容。SantiRoca-Fàbrega说:"这是对星系形成进行更可靠模拟的开始,这反过来将帮助我们更好地了解我们的银河系。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423070.htm手机版:https://m.cnbeta.com.tw/view/1423070.htm

相关推荐

封面图片

超级计算机生成的"宇宙"揭示了黑洞的成长过程

超级计算机生成的"宇宙"揭示了黑洞的成长过程黑洞被事件视界所包围,这是一个神秘的、不可见的层,没有任何东西可以从中逃脱,无论是物质、光还是信息。这意味着,事件视界吞噬了关于黑洞过去的每一点证据。亚利桑那大学斯图尔德天文台副教授、日本国家天文台(NAOJ)项目研究员彼得-贝赫罗兹说:"由于这些物理事实,人们一直认为不可能测量黑洞是如何形成的。"Behroozi和Steward的博士生HaowenZhang一起领导一个国际团队,使用机器学习和超级计算机来重建黑洞的生长历史,有效地剥开它们的事件视界,揭示出黑洞之外的蛛丝马迹。对数以百万计的计算机生成的"宇宙"的模拟显示,超大质量黑洞与它们的主星系同步成长,这一论点已经被怀疑了20年,但科学家们直到现在才能够确认这种关系。一篇包含该团队发现的论文已经发表在《皇家天文学会月刊》上。"如果你回到宇宙中更早更早的时代,你会发现完全相同的关系是存在的,"该论文的共同作者Behroozi说。"因此,随着星系由小变大,它的黑洞也在由小变大,与我们今天在整个宇宙的星系中看到的完全一样。"大多数(如果不是全部)散布在宇宙中的星系被认为在其中心有一个超大质量的黑洞。这些黑洞的质量超过太阳的10万倍,有些黑洞的质量达到数百万甚至数十亿太阳质量。天体物理学最令人困惑的问题之一是这些庞然大物是如何快速成长的,以及它们首先是如何形成的。为了找到答案,Zhang、Behroozi和他们的同事创建了Trinity平台,该平台使用一种新的机器学习形式,能够在一台超级计算机上生成数百万个不同的宇宙,每个宇宙都遵守不同的物理理论,说明星系应该如何形成。研究人员建立了一个框架,在这个框架中,计算机为超大质量黑洞如何随时间增长提出了新规则。然后他们用这些规则来模拟虚拟宇宙中数十亿黑洞的生长,并"观察"虚拟宇宙,以测试它是否与几十年来对整个真实宇宙中的黑洞的实际观察结果一致。在提出和拒绝了数以百万计的规则集之后,计算机最终确定了最能描述现有观测结果的规则。"我们正试图了解星系如何形成的规则,"Behroozi说。"简而言之,我们让Trinity猜测物理规律可能是什么,并让他们在一个模拟的宇宙中进行,看看这个宇宙的结果如何。它看起来到底像不像真实的宇宙?"根据研究人员的说法,这种方法对宇宙内部的其他东西同样有效,而不仅仅是星系。该项目名称"Trinity"是指其三个主要的研究领域:星系、它们的超大质量黑洞和它们的暗物质光环--巨大的暗物质茧,如果直接测量是看不到的,但其存在对于解释各地星系的物理特性是必要的。在之前的研究中,研究人员使用他们框架的早期版本,即UniverseMachine来模拟数以百万计的星系及其暗物质晕轮。研究小组发现,在其暗物质光环中生长的星系遵循光环质量和星系质量之间的一种非常具体的关系。"在我们的新工作中,我们在这种关系中加入了黑洞,"Behroozi说,"然后问黑洞如何在这些星系中生长,以重现人们对它们的所有观察。""我们对黑洞质量有非常好的观察,"论文的主要作者张说。"然而,这些在很大程度上被限制在本地宇宙。当你看得越远,准确测量黑洞的质量和它们的宿主星系之间的关系变得越来越困难,甚至最终不可能。由于这种不确定性,观测不能直接告诉我们这种关系在整个宇宙中是否成立。"Trinity不仅使天体物理学家能够避开这一限制,而且还能避开单个黑洞的事件视界信息障碍,方法是将数百万个观察到的处于不同成长阶段的黑洞的信息拼接起来。尽管没有一个黑洞的历史可以被重建,但研究人员可以测量所有黑洞的平均生长历史。黑洞放入模拟星系,并输入关于它们如何生长的规则,你可以把产生的宇宙与我们拥有的所有实际黑洞的观测结果进行比较。然后可以重建宇宙中任何黑洞和星系从今天到宇宙开始时的样子。"模拟结果揭示了另一个令人困惑的现象。超大质量黑洞--就像在银河系中心发现的那个--在其初生期增长最为旺盛,当时宇宙只有几十亿年的历史,只是在随后的时间里,在过去100亿年左右的时间里急剧放缓。"我们已经知道一段时间,星系有这种奇怪的行为,它们形成新星的速度达到了一个高峰,然后随着时间的推移逐渐减少,再后来,它们完全停止了形成恒星,"Behroozi说。"现在,我们已经能够证明黑洞也是如此:在与它们的宿主星系相同的时间增长和关闭。这证实了数十年来关于星系中黑洞增长的假设。"这一结果带来了更多的问题,黑洞比它们所处的星系小得多,如果银河系按比例缩小到地球的大小,那么它的超大质量黑洞将是这句话末尾的句号大小。要使黑洞的质量在与大星系相同的时间范围内增加一倍,需要在巨大的不同尺度上实现物质流动的同步。黑洞如何与星系合谋以实现这种平衡尚待了解。...PC版:https://www.cnbeta.com.tw/articles/soft/1335923.htm手机版:https://m.cnbeta.com.tw/view/1335923.htm

封面图片

天文学家用韦伯望远镜揭开宇宙最古老低质量星系的秘密

天文学家用韦伯望远镜揭开宇宙最古老低质量星系的秘密罗格斯大学的天文学家利用詹姆斯-韦伯太空望远镜研究了沃尔夫-伦德马克-梅洛特星系,揭开了宇宙早期恒星形成的历史。他们的发现为星系如何演化以及温度在恒星形成中的作用提供了新的见解。资料来源:美国国家航空航天局面向宇宙的“考古发掘”艺术与科学学院物理与天文学系助理教授克里斯汀-麦奎恩(KristenMcQuinn)说:"通过如此深入的观察和如此清晰的观察,我们已经能够有效地回到过去,基本上是在进行一种考古挖掘,寻找宇宙历史早期形成的低质量恒星。"她领导的这项研究发表在《天体物理学报》。McQuinn认为,罗格斯大学高级研究计算办公室管理的Amarel高性能计算集群使研究小组能够计算银河系的恒星发展史。这项研究的一个方面是将一次大规模计算重复600次。她补充说,这项重大计算工作还有助于确认望远镜校准和数据处理程序,这将使更广泛的科学界受益。WLM星系部分区域的两幅景象,一幅由美国宇航局哈勃太空望远镜拍摄(左),另一幅由詹姆斯-韦伯太空望远镜拍摄。图片来源:Science:NASA,ESA,CSA,IPAC,KristenMcQuinn(RU),ImageProcessing:ZoltG.Levay(STScI),AlyssaPagan(STScI)低质量星系的重要性麦奎恩对所谓的"低质量"星系特别感兴趣。因为它们被认为是早期宇宙的主宰,研究人员可以利用它们来研究恒星的形成、化学元素的演化以及恒星形成对星系气体和结构的影响。它们很微弱,分布在天空中,构成了本地宇宙中的大多数星系。像韦伯望远镜这样先进的望远镜让科学家们能够近距离观察它们。WLM是德国天文学家马克斯-沃尔夫(MaxWolf)于1909年发现的一个"不规则"星系,这意味着它不具有明显的形状,如螺旋形或椭圆形,瑞典天文学家克努特-伦德马克(KnutLundmark)和英国天文学家菲力伯特-雅克-梅洛特(PhilibertJacquesMelotte)于1926年对它进行了更详细的描述。它位于本星系群的外围,本星系群是一个哑铃状的星系群,其中包括银河系。麦奎因指出,由于位于本星系群的边缘,WLM免受了与其他星系交融的破坏,使其恒星群处于原始状态,有利于研究。天文学家之所以对WLM感兴趣,还因为它是一个充满活力的复杂星系,拥有大量气体,能够积极地形成恒星。WLM银河系中的恒星形成为了了解银河系恒星形成的历史--即恒星在宇宙不同时期的诞生速度,麦奎恩和她的团队利用这架望远镜煞费苦心地将包含成千上万颗恒星的天空区域归零。为了确定恒星的年龄,他们测量了恒星的颜色(代表温度)和亮度。麦奎因说:"我们可以利用我们对恒星演化的了解,以及这些颜色和亮度所表明的情况,基本上确定星系恒星的年龄。"研究人员随后对不同年龄的恒星进行了计数,并绘制出了宇宙历史上恒星的诞生率。以这种方式对恒星进行编目向研究人员表明,随着时间的推移,WLM产生恒星的能力在起伏。研究小组的观测结果证实了科学家们早些时候利用哈勃太空望远镜所做的评估,这些观测结果表明,在宇宙历史的早期,该星系曾在30亿年的时间里产生过恒星。它停顿了一段时间,然后又重新点燃。她相信这种停顿是由早期宇宙的特定条件造成的:"那时的宇宙真的很热。我们认为,宇宙的温度最终加热了这个星系中的气体,使恒星的形成一度停止。冷却期持续了几十亿年,然后恒星形成再次开始。"这项研究是美国国家航空航天局"早期发布计划"的一部分,该计划指定科学家与太空望远镜科学研究所合作开展研究,旨在突出韦伯的能力,帮助天文学家为未来的观测做好准备。美国国家航空航天局于2021年12月发射了韦伯望远镜。这个大型镜面仪器在距离地球一百万英里的地方围绕太阳运行。科学家们争先恐后地在望远镜上研究一系列课题,包括早期宇宙的状况、太阳系的历史以及系外行星的搜寻。麦奎因说:"这项计划将产生许多尚未完成的科学成果。"相关文章:韦伯望远镜在极端恒星环境中发现生命的前身:水和简单的有机分子...PC版:https://www.cnbeta.com.tw/articles/soft/1422060.htm手机版:https://m.cnbeta.com.tw/view/1422060.htm

封面图片

一个年轻、紧凑的星系形成恒星的速度比银河系快1000倍

一个年轻、紧凑的星系形成恒星的速度比银河系快1000倍来自SISSA的研究人员利用ALMA干涉仪确定了一个神秘、遥远的天体的主要属性。这个年轻、紧凑的星系形成恒星的速度比银河系快1000倍,这项研究为星系形成和其他"黑暗"天体的研究提供了宝贵的见解。PC版:https://www.cnbeta.com.tw/articles/soft/1353871.htm手机版:https://m.cnbeta.com.tw/view/1353871.htm

封面图片

在没有暗物质的宇宙中星系会如何形成?研究人员找到了答案

在没有暗物质的宇宙中星系会如何形成?研究人员找到了答案据科学家们说,他们的假设可以解决现代宇宙学的许多谜题。该结果发表在《天体物理学杂志》上。模拟开始后的15亿年。颜色越浅,气体的密度就越高。浅蓝色的点表示年轻的恒星。现在的宇宙学家认为,大爆炸之后,物质并不是完全均匀分布的。密度大的地方由于其较强的引力,从周围吸引了越来越多的物质。在几十亿年的时间里,这些气体的堆积最终形成了我们今天看到的星系。这一理论的一个重要成分是所谓的暗物质。一方面,据说它对最初的不均匀分布负责,导致了气体云的聚集。它也解释了一些令人困惑的观察结果。例如,旋转星系中的恒星往往移动得如此之快,以至于它们实际上应该被抛射出去。似乎在星系中还有一个额外的重力源来阻止这一点--一种用望远镜无法看到的"恒星腻子":暗物质。然而,仍然没有直接证据证明它的存在。波恩大学亥姆霍兹辐射与核物理研究所和布拉格查尔斯大学天文研究所的帕维尔-克鲁帕教授解释说:"也许引力本身的行为与之前的想法不同。这个理论的缩写是MOND(MOdifiedNewtonianDynamics);它是由以色列物理学家MordehaiMilgrom教授博士发现的。根据该理论,两个质量之间的吸引力只在某一点上遵守牛顿定律。在非常低的加速度下,如星系中的情况,它变得相当强大。这就是为什么星系不会因为它们的旋转速度而破裂的原因。"接近现实的结果Kroupa的博士生NilsWittenburg说:"通过与斯特拉斯堡的BenoitFamaey博士合作,我们现在首次模拟了星系是否会在MOND宇宙中形成,如果是的话,是哪些星系。为了做到这一点,他使用了Kroupa小组开发的用于复杂引力计算的计算机程序。因为在MOND中,一个物体的吸引力不仅取决于其自身的质量,而且还取决于其附近是否有其他物体。"然后,科学家们用这个软件模拟了恒星和星系的形成,从大爆炸后几十万年的气体云开始。"Kroupa解释说:"在许多方面,我们的结果与我们用望远镜实际观察到的情况非常接近。例如,计算机生成的星系中的恒星的分布和速度与在夜空中可以看到的模式相同。此外,我们的模拟结果主要是形成了旋转的盘状星系,如银河系和我们所知的几乎所有其他大型星系,另一方面,暗物质模拟主要创造了没有明显物质盘的星系--这与观测结果的差异很难解释。"基于暗物质存在的计算对某些参数的变化也非常敏感,例如超新星爆发的频率及其对星系中物质分布的影响。然而,在MOND模拟中,这些因素几乎没有起到作用。然而,最近从波恩、布拉格和斯特拉斯堡发表的结果并不是在所有的地方都与现实相符。"我们的模拟只是第一步,"Kroupa强调说。例如,到目前为止,科学家们只对物质的原始分布和年轻宇宙的条件进行了非常简单的假设。"我们现在必须重复计算,包括更复杂的影响因素。然后我们将看到MOND理论是否真正解释了现实。"...PC版:https://www.cnbeta.com.tw/articles/soft/1355047.htm手机版:https://m.cnbeta.com.tw/view/1355047.htm

封面图片

科学家用计算机模拟量子技术中自旋缺陷的形成过程

科学家用计算机模拟量子技术中自旋缺陷的形成过程研究人员确定了在碳化硅中产生特定自旋缺陷的计算策略,为量子技术进步铺平了道路。他们的研究结果主要集中在二价自旋缺陷的形成上,这表明还需要做更多的工作来推广这种方法。这项研究对量子信息和传感应用至关重要,并得到了实验人员的密切合作和能源部的资助。图片来源:EmmanuelGygi提供。图中部分内容改编自ChristophDellago和PeterG.Bolhuis,Adv.Poly.科学》,施普林格出版社(2008年)。量子机制与当前挑战半导体和绝缘体中的电子自旋缺陷是量子信息、传感和通信应用的丰富平台。缺陷主要源自固体中的杂质和/或错位原子,与这些原子缺陷相关的电子带有自旋。这种量子力学特性可用于提供可控的量子比特,即量子技术中的基本操作单元。然而,人们对这些自旋缺陷的合成(通常是通过植入和退火工艺在实验中实现的)还不甚了解,更重要的是,还无法对其进行完全优化。碳化硅是一种极具吸引力的自旋量子比特宿主材料,因其具有工业可用性,但迄今为止,不同的实验在制造所需的自旋缺陷方面得出了不同的建议和结果。计算之旅和发现分子工程与化学教授加利是这篇新论文的通讯作者,他说:"目前还没有一种明确的策略,可以按照我们想要的精确规格设计自旋缺陷的形成,这种能力对于推动量子技术的发展非常有利。因此,我们开始了漫长的计算之旅,并提出了以下问题:我们能否通过进行全面的原子模拟来了解这些缺陷是如何形成的?"加利的团队,包括小组的博士后研究员张存志和加州大学戴维斯分校计算机科学教授弗朗索瓦·吉吉结合多种计算技术和算法,预测了碳化硅中被称为"空位"的特定自旋缺陷的形成。空位是通过移除碳化硅固体中相邻的一个硅原子和一个碳原子而产生的。从以前的实验中了解到,这类缺陷是很有希望的传感应用平台。量子传感可以实现磁场和电场的探测,还能揭示复杂的化学反应是如何发生的,这些都是当今技术无法实现的。加利说:"要在固态中释放量子传感能力,我们首先需要能够在正确的位置创造出正确的自旋缺陷或量子比特。 "为了找到预测特定自旋缺陷形成的方法,加利和她的团队结合了几种技术,帮助他们观察缺陷形成时原子和电荷的运动与温度的函数关系。团队量子模拟中使用的第一原理分子动力学代码Qbox的主要开发者Gygi说:"通常情况下,当自旋缺陷产生时,其他缺陷也会出现,这些缺陷可能会对自旋缺陷的目标传感能力产生负面干扰。这样一来,能够充分理解缺陷形成的复杂机理非常重要。 "技术与预测研究小组将Qbox代码与中西部计算材料综合中心(MICCoM)开发的其他先进采样技术相结合,该中心是一个计算材料科学中心,总部设在阿贡国家实验室,由能源部资助,Galli和Gygi都是该中心的高级研究员。加利说:"我们的综合技术和多重模拟向我们揭示了在碳化硅中高效、可控地形成二价自旋缺陷的特定条件。在我们的计算中,我们让基本物理方程告诉我们缺陷形成时晶体结构内部发生了什么"。未来方向与合作研究小组预计,实验人员将有兴趣使用他们的计算工具来设计碳化硅和其他半导体中的各种自旋缺陷,但他们也提醒说,要推广他们的工具来预测更广泛的缺陷形成过程和缺陷阵列还需要做更多的工作。加利说:"但我们提供的原理证明非常重要--我们证明了可以通过计算确定产生所需自旋缺陷所需的一些条件。"接下来,她的团队将继续努力扩大他们的计算研究,并加快他们的算法。他们还希望扩大研究范围,纳入一系列更现实的条件。"在这里,我们只研究块状样品,但在实验样品中,存在表面、应变和宏观缺陷。我们希望在未来的模拟中加入这些因素,特别是了解表面如何影响自旋缺陷的形成。"虽然她的团队是在计算研究的基础上取得的进展,但加利说,他们的所有预测都植根于与实验人员的长期合作。"如果没有我们所处的生态系统,没有与实验人员的不断交流和合作,这一切都不会发生。"...PC版:https://www.cnbeta.com.tw/articles/soft/1394863.htm手机版:https://m.cnbeta.com.tw/view/1394863.htm

封面图片

韦伯望远镜揭开120亿年前恒星形成星系的秘密

韦伯望远镜揭开120亿年前恒星形成星系的秘密詹姆斯-韦伯太空望远镜(JWST)拍摄的新图像让澳大利亚天文学家揭开了宇宙早期星系如何开始恒星形成爆炸的秘密。一些早期星系充斥着大量气体,它们发出的光亮超过了新出现的恒星。在一项新的研究中,天文学家发现了这些明亮的星系在大约120亿年前是多么的普遍。来自JWST的图像显示,宇宙早期几乎90%的星系都有这种发光气体,产生所谓的"极端发射线特征"。一个遥远的极端发射线星系的图像。由詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)拍摄。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。"这些年轻星系中的恒星非常了不起,它们能产生恰到好处的辐射来激发周围的气体。这些气体反过来比恒星本身更加闪亮,"ARC三维全天空天体物理学卓越中心(ASTRO3D)和国际射电天文学研究中心(ICRAR)科廷大学节点的安舒-古普塔(AnshuGupta)博士说,他是描述这一发现的论文的第一作者。"直到现在,要了解这些星系是如何积累如此多的气体还很困难。我们的发现表明,这些星系中的每一个都至少有一个近邻星系。这些星系之间的相互作用会导致气体冷却,引发强烈的恒星形成,从而产生这种极端的发射特征。"观测早期宇宙星系的进展这一发现是一个生动的例子,说明JWST望远镜在研究早期宇宙方面提供了无与伦比的清晰度。"詹姆斯-韦伯望远镜的数据质量非常出色,"古普塔博士说。"它具有足够的深度和分辨率来观察早期星系周围的邻居和环境,当时宇宙只有20亿年的历史。利用这一细节,我们能够看到具有极端发射特征的星系和不具有极端发射特征的星系在邻近星系数量上的明显差异。"詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)看到的目标星系。JWST图像前所未有的分辨率和清晰度,让我们可以识别出哈勃都无法看到的邻近星系(青色圆圈)。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。在此之前,我们很难清楚地看到宇宙诞生20亿年左右的星系。由于当时许多恒星尚未形成,可关注的星系数量较少,因此这项任务变得更加困难。古普塔博士说:"在JWST出现之前,我们只能真正了解大质量星系的情况,而这些星系大多处于非常密集的星系团中,因此研究起来比较困难。以当时的技术,我们无法观测到这项研究中95%的星系。詹姆斯-韦伯望远镜彻底改变了我们的工作。"一个遥远的极端发射线星系的图像。由詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)拍摄。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。证实之前的假设ASTRO3D和哈佛大学及史密森尼天体物理学中心的副主任Tran说,这一发现证明了之前的假设。她说:"我们怀疑这些极端星系是早期宇宙中激烈相互作用的标志,但只有借助JWST的锐利目光,我们才能证实我们的预感。"这项研究依靠的是作为JWST高级深河外星系巡天(JADES)的一部分获得的数据,JADES正在利用深红外成像和多天体光谱探索宇宙中最早的星系。它为进一步深入了解宇宙开辟了道路。遥远的极发射线星系图像。詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)所见。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。"这幅作品真正令人兴奋的地方在于,我们看到了最早的星系与最近形成的星系之间的发射线相似性,而且更容易测量。这意味着我们现在有了更多的方法来回答关于早期宇宙的问题,而这一时期在技术上是很难研究的,"第二作者、科廷大学/ICRAR和ASTRO3D的博士生RaviJaiswar说。"这项研究是我们星系演化计划的核心工作。通过了解早期星系的面貌,我们可以在此基础上回答构成我们地球上日常生活中一切的元素的起源问题,"ASTRO3D主任EmmaRyan-Weber教授说。...PC版:https://www.cnbeta.com.tw/articles/soft/1396735.htm手机版:https://m.cnbeta.com.tw/view/1396735.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人