功能材料新“大门” 中科大飞秒激光打印出人工微细血管

功能材料新“大门”中科大飞秒激光打印出人工微细血管飞秒激光动态全息加工方法是一种利用超短脉冲激光进行微纳加工的技术,其特点是能够实现对材料的精细加工和微纳米级别的结构控制。这项技术在制造微细结构方面具有独特的优势,因为它可以实现对材料的高精度切割和微纳米级的表面改性。特别是在构建三维微细结构时,飞秒激光动态全息加工方法可以实现对复杂结构的精细加工和快速制作,为微血管网络的构建提供了重要的技术支持。三维毛细血管网络的构建对于组织工程具有重要的意义。在人工组织和器官的制备过程中,良好的血液供应系统是确保细胞存活和功能的重要保障。然而,传统的体外组织工程制备往往无法有效构建与之相适应的血管系统,导致细胞在体内植入后缺乏有效的血液供应。因此,构建具有生理功能的三维毛细血管网络对于实现人工组织的长期稳定生长和发挥其功能至关重要。飞秒激光动态全息加工方法的引入为构建微血管网络提供了新的可能性和技术支持。通过该方法,可以实现微血管支架的高效构建,为体外组织工程提供了新的解决方案。针对三维毛细血管支架的高效构建,飞秒激光动态全息加工方法具有独特的优势。首先,飞秒激光动态全息加工方法可以在微尺度上实现高精度的加工和结构控制,其加工精度可以达到亚微米甚至纳米级别。这为构建微细的血管支架提供了重要的技术基础,能够实现更加精细和复杂的结构。其次,飞秒激光动态全息加工方法具有加工速度快、成型效率高的特点,可以在较短的时间内完成复杂微结构的制备,为大规模制备三维毛细血管网络提供了可能。因此,飞秒激光动态全息加工方法的应用在三维毛细血管支架的构建中具有重要的技术优势。相关研究成果已经发表于《先进功能材料》,这标志着飞秒激光动态全息加工方法在三维毛细血管网络构建领域取得了重要突破。这一成果的发表不仅证明了该技术在微血管网络构建中的可行性和创新性,也为该领域后续的研究和应用奠定了基础。通过学术期刊的发表,相关研究成果将得到更广泛的认可和关注,有助于推动该技术在组织工程领域的应用和推广。另外,相关技术还获得了专利授权,这意味着该项研究在技术创新和知识产权保护方面取得了重要进展。专利授权不仅对于科研团队而言是一项重要的荣誉,更重要的是可以为后续的产业化应用和商业化转化提供有力的支持。能够通过知识产权的保护确保相关技术在市场竞争中的合法地位,有利于吸引更多的资金和资源投入到相关技术的研发和产业化进程中,推动科研成果更好地转化为生产力。人工微血管网络的应用前景非常广阔。首先,该技术在组织工程和再生医学领域具有重要意义,可以为人工器官和组织的构建提供重要的生理支持,有助于解决传统组织工程中面临的血管供血难题,为人工器官的长期稳定功能提供必要的条件。其次,人工微血管网络的构建还为药物筛选、疾病模型建立等领域提供了新的研究工具和平台,有助于推动相关领域的研究和应用进程。未来,随着人工微血管网络技术的不断完善和推广,相信它将在医学、生物工程等多个领域展现出巨大的应用潜力,为人类健康事业带来新的希望和机遇。通过以上介绍,我们不难看出,飞秒激光动态全息加工方法在人工微血管网络构建领域具有重要的意义和广阔的应用前景。随着相关技术的不断进步和完善,相信它将为组织工程和再生医学领域带来重大的变革和突破,为人类健康事业作出重要贡献。在未来的发展道路上,我们期待该项技术能够得到更广泛的应用,并为人类生命健康事业带来更多的惊喜和希望。...PC版:https://www.cnbeta.com.tw/articles/soft/1418713.htm手机版:https://m.cnbeta.com.tw/view/1418713.htm

相关推荐

封面图片

科学家们即将完成人造血管的工程设计

科学家们即将完成人造血管的工程设计研究人员开创了一种利用天然组织改造血管的方法,这种方法速度更快、成本更低、规模更大。这种创新方法融合了多种材料和技术,可制造出与天然血管相似的血管,为心血管疾病的治疗提供了一种前景广阔的解决方案。上图为心脏和血管插图。资料来源:LisaAnnYount通过将多种材料和制造技术相结合,他们开发出了一种方法,可以制造出像原生血管一样具有复杂几何形状的血管。这项研究成果于7月13日发表在《ACS应用材料与界面》(ACSAppliedMaterialsandInterfaces)杂志上。墨尔本大学的黄涛博士、博士生马修-梅尔(MathewMail)和哈齐姆-阿尔卡泽米(HazemAlkazemi)以及莫纳什大学的泽里娜-汤姆金斯(ZerinaTomkins)副教授也参加了该研究小组。血管具有维持生命的重要功能,它将富含氧气的血液和必需的营养物质输送到身体各个部位,同时清除有毒产物。另一方面,血管的疾病和功能障碍会导致心脏病发作、中风和动脉瘤等危及生命的疾病,使心血管疾病成为全球头号杀手。希思副教授说,多年来,世界各地的研究人员一直在努力完善血管组织工程学。他介绍说:"目前的方法进展缓慢,需要生物反应器等专业而昂贵的设备,而且吞吐量低,这意味着很难提供所需的工程血管供应。通过结合多种材料和制造技术,我们的方法让我们更接近工程血管将成为心血管疾病变革性解决方案的未来,尤其是对于那些缺乏合适供体血管的患者。"虽然搭桥手术已被证明是替代严重受损血管的救命方法,但它也有局限性,尤其是对于冠状动脉等直径较小的血液通道。非活体合成移植物会导致血液凝结和阻塞,因此在某些情况下并不适用。因此,因既往手术或糖尿病等合并症而选择有限的患者面临着巨大的问题。为了克服这些限制,研究人员研究开发了由人体细胞和组织制成的"组织工程"血管。这些制造出来的血管有可能治疗心血管疾病,并为更大的组织创造构建内置供血系统。奥康纳教授说:"这项研究是科学家在人体血管工程能力方面迈出的激动人心的一步,我们现在能够利用具有适当机械性能和模仿血管最内层细胞方向的活体组织,快速、廉价地制造血管。"虽然这种工程血管还不能直接用于搭桥手术,但这些发现标志着组织工程领域的重大进展。...PC版:https://www.cnbeta.com.tw/articles/soft/1375973.htm手机版:https://m.cnbeta.com.tw/view/1375973.htm

封面图片

激光可对3D打印金属进行微调 而无需"加热和击打"

激光可对3D打印金属进行微调而无需"加热和击打"三维打印金属通常是用一台机器以细粉的形式铺设薄层金属合金。然后在数字模型的引导下,使用激光或电子束熔化或烧结这层金属,然后再添加一层。打印完成后,多余的粉末被扫除,露出最终产品。通过这种打印技术,可以快速形成非常复杂的形状。问题是,用金属制作的东西不仅仅是形状。金属的物理、化学和机械特性之间也存在复杂的相互作用。如果控制不当,最终产品就可能是废品。一个非常简单的例子就是3D打印刀。我们有可能制造出一种非常奇特的刀片,展现出通常用传统方法几乎不可能实现的曲线和细节,但如果不考虑金属本身的特性,这种刀片可能会像花生脆一样折断,或者软得像黄油一样,无法更好地保持刃口。在制造复杂形状时,这是一个显而易见的挑战。不过,金属工人经过数千年的实践,并在过去几个世纪中借助一些新兴科学的帮助,已经开发出了屡试不爽的控制金属特性的技术。从本质上讲,这涉及到通过不同的加热和击打方法来改变金属的晶体结构。通过控制加热、冷却和锻造,可以对金属的结构进行微调,直到适合手术刀和工字钢等各种材料。这对于形状简单的金属物体来说还不错,但我们不能把复杂的3D打印形状塞进熔炉或用锤子敲打,这样就失去了使用3D打印技术制造金属的初衷。相反,剑桥团队(包括来自新加坡、瑞士、芬兰和澳大利亚的研究人员)选择使用激光在原位改变金属。他们的想法是,激光会选择性地熔化不锈钢制成的物体上的斑点,从而改变其晶体结构。通过这种方式,他们可以使打印金属变得坚固,同时消除这种打印金属容易表现出的脆性。微小尺度的选择性再加热将激光变成了微型锤子。这种技术无法复制传统的金属加工工艺,因此研究小组转而采用一种古老的技术来实现类似的效果。制作高质量剑刃的一种方法是使用两种不同的金属,如钢和铁,然后将它们多次焊接和折叠在一起。这样制作出的剑刃层次分明,两种金属相互映衬,使铸剑师不仅能控制整个剑刃的特性,还能控制特定部分的特性,因此剑刃的中心部分富有弹性,而边缘部分则足够坚硬,可以磨得很锋利。剑桥大学的研究小组也想出了类似的办法,他们交替使用激光处理过的点和未处理过的点。这使他们能够在很大程度上控制物体的最终特性。"我们认为这种方法有助于降低金属三维打印的成本,进而提高金属制造业的可持续发展能力,"团队负责人、剑桥大学工程系的MatteoSeita博士说。"在不久的将来,我们还希望能够绕过熔炉中的低温处理,进一步减少在工程应用中使用3D打印部件前所需的步骤数量"。这项研究发表在《自然通讯》(NatureCommunications)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1395013.htm手机版:https://m.cnbeta.com.tw/view/1395013.htm

封面图片

一个时代的终结:爱普生将不再生产激光打印机

一个时代的终结:爱普生将不再生产激光打印机该公司计划在2026年之前完全抛弃激光打印机硬件,这些市场的客户将继续获得消耗品和备件,直到以后完全抛弃该业务。"在解释这些决定时,该公司引用了喷墨的更大潜力,在可持续性方面取得了有意义的进展。爱普生在停止销售激光打印机硬件后,将继续通过提供耗材和维修零件来支持客户,"爱普生发布的一份新闻稿写道。停止支持激光打印机的主要原因再简单不过了:喷墨打印机的工作方式使爱普生能够专注于可持续发展的硬件,特别是因为激光硬件消耗的能源更多,且通常需要更多的消耗品部件。爱普生销售与市场部的行政总经理KoichiKubota解释说,从现在开始,打印业务将完全集中在喷墨技术上。"我们长期以来一直致力于可持续的喷墨技术,现在已经决定逐步停止销售激光打印机硬件。作为一家公司,我们完全致力于可持续的创新和行动,而喷墨打印机使用更少的能源和更少的消耗品。"他说:"激光打印机的工作原理是加热并将墨粉熔化在页面上,而爱普生的无热喷墨技术通过使用机械能直接将墨水喷射到页面上,消耗的电力更少。"事实上,爱普生公司自己公布的统计数据表明,喷墨打印机比激光打印机更省电。该公司进行的一项研究表明,在典型的办公室使用中,喷墨打印机的能耗减少了85%,同时产生的二氧化碳也减少了85%。这意味着,每6棵雪松树需要吸收因使用激光打印机而产生的二氧化碳量,爱普生喷墨打印机只需要1棵雪松树。然而,对于客户来说,另一个重要的区别是,喷墨打印机需要的耗材和零件更少,所以从长远来看,采用这种硬件比激光打印机更容易,更有成本效益。这也意味着减少了故障时间。在废物产生方面,爱普生认为喷墨打印机需要更换的部件较少,使其操作更加方便,因为它只需要更换墨水和废墨盒,而激光打印机则需要更换墨粉、鼓、显影剂、保险丝和更多的部件。爱普生解释说:"这并不是一个微小的细节,因为与激光打印机相比,更换部件的数量减少了59%,这让打印机在生命周期内对环境的影响大大降低。"不仅是爱普生,而且很可能是打印行业的其他部分,爱普生的竞争对手也几乎肯定会长期效仿。...PC版:https://www.cnbeta.com.tw/articles/soft/1333939.htm手机版:https://m.cnbeta.com.tw/view/1333939.htm

封面图片

首款可见光波长飞秒光纤激光器研制成功

首款可见光波长飞秒光纤激光器研制成功研究人员开发出了第一台可以在电磁波谱可见光范围内产生飞秒脉冲的光纤激光器。图片来源:JérômeLapointe克服光纤激光器开发中的挑战从历史上看,实现可见飞秒脉冲需要复杂且本质上低效的设置。尽管光纤激光器由于其坚固性/可靠性、占地面积小、效率高、成本低和亮度高而成为一种非常有前途的替代方案,但到目前为止,还不可能产生持续时间为飞秒(10-15s)直接使用此类激光器进行测距。加拿大拉瓦尔大学研究团队负责人RéalVallée表示:“我们在可见光谱中演示的飞秒光纤激光器为新型可靠、高效和紧凑的超快激光器铺平了道路。”新型光纤激光器的技术细节研究人员在Optica出版集团的《光学快报》杂志上描述了他们的新型激光器,该激光器基于稀土掺杂氟化物光纤。该激光器发射波长为635nm的红光,可实现持续时间为168fs、峰值功率为0.73kW、重复率为137MHz的压缩脉冲。使用商用蓝色激光二极管作为光源或泵浦源,有助于使整体设计坚固、紧凑且经济高效。研究小组成员包括RéalVallée、Marie-PierLord、MichelOlivier以及未在合影中的MartinBernier。图片来源:JérômeLapointe参与该项目的博士生Marie-PierLord表示:“如果在不久的将来能够实现更高的能量和功率,许多应用都可以从这种类型的激光器中受益。潜在的应用包括高精度、高质量的生物组织消融和双光子激发显微镜。飞秒激光脉冲还允许在材料加工过程中进行冷烧蚀,这一过程可以[比长脉冲]进行更干净的切割,因为它不会产生热效应。”扩展光纤激光器的光谱范围在光纤激光器中,掺杂稀土元素的光纤充当激光介质。尽管光纤激光器是最简单、坚固且可靠的高亮度激光系统之一,但石英光纤的使用往往将其限制在近红外光谱区域。Vallée的团队一直致力于通过使用由氟化物而不是二氧化硅制成的光纤来扩展这些激光源的光谱范围。“我们之前专注于开发中红外光纤激光器,但最近对可见光纤激光器产生了兴趣,”洛德说。“虽然此类激光器缺乏紧凑高效的泵浦源,长期以来阻碍了其发展,但最近出现的蓝色光谱半导体激光源为高效可见光纤激光器的开发提供了关键技术。”在展示了连续发射可见波长的光纤激光器后,研究人员希望将这一进展扩展到超快脉冲源。得益于氟化物光纤制造工艺的改进,现在可以获得镧系元素掺杂光纤,其特性对于开发高效可见光纤激光器至关重要。创新和未来方向Vallée团队开发的新型脉冲光纤激光器将稀土掺杂氟化物光纤与商用蓝色二极管泵浦激光器相结合。为了产生和维持脉冲输出,研究人员还必须弄清楚如何仔细管理光纤中的光偏振。“开发新波长的激光器,其中光学元件的材料特性与以前使用的不同,有时可能会很棘手,”合著者米歇尔·奥利维尔(MichelOlivier)说。“然而,我们的实验表明,我们的激光器的性能与我们的模拟非常吻合。这证实了该系统表现良好且易于理解,并且该系统的重要参数已正确表征并且非常适合脉冲激光器,尤其是我们使用的光纤的特性。”接下来,研究人员希望通过使装置完全一体化来改进技术,这意味着各个光纤尾纤光学元件将直接相互粘合。这将减少装置的光学损耗,提高效率,并使激光器更加可靠、紧凑和坚固。他们还在研究提高激光器脉冲能量、脉冲持续时间和平均功率的不同途径。...PC版:https://www.cnbeta.com.tw/articles/soft/1400663.htm手机版:https://m.cnbeta.com.tw/view/1400663.htm

封面图片

EPFL Galatea实验室科学家用玻璃制造出飞秒激光器

EPFLGalatea实验室科学家用玻璃制造出飞秒激光器科学家们用玻璃制造出了一种紧凑型飞秒激光器,彻底改变了对准过程,有望推动量子光学和技术微型化的发展。这一创新方法得到了欧洲研究理事会的资助,有望实现商业化。图片来源:JamaniCaillet/EPFLGalatea实验室是光学、力学和材料科学的交叉学科,飞秒激光器是贝鲁厄工作的关键要素。这些激光器能发出极短而稳定的光脉冲,可应用于激光眼科手术、非线性显微镜、光谱学和可持续数据存储等多个领域。通常情况下,商用飞秒激光器是通过将光学元件安装在基板(如光学面包板)上制成的,因此必须进行细致的对准。"我们使用飞秒激光来研究材料的非线性特性,以及如何改变材料的体积,"Bellouard解释说。"通过痛苦的复杂光学对准练习,让你梦想用更简单、更可靠的方法来对准复杂的光学器件"。Bellouard及其团队的解决方案是什么?使用商用飞秒激光器用玻璃制作飞秒激光器,大小不超过一张信用卡,对准麻烦更少。研究成果发表在《光学》(Optica)杂志上。如何用玻璃制造飞秒激光器要利用玻璃基板制造飞秒激光器,科学家们首先要从一块玻璃板开始。Bellouard解释说:"我们希望制造出稳定的激光器,所以我们使用玻璃,因为玻璃的热膨胀率比传统基板低,是一种稳定的材料,而且对我们使用的激光来说是透明的。"科学家们使用商用飞秒激光器在玻璃上蚀刻出特殊的刘海,以便精确放置激光器的重要组件。即使是微米级精度的制造,刘海和组件本身的精度也不足以达到激光品质的对准。换句话说,反射镜还没有完全对准,因此在这个阶段,他们的玻璃装置还不能作为激光器使用。使用蚀刻技术制造GigaFemto激光器。图片来源:JamaniCaillet/EPFL科学家们还从以前的研究中了解到,他们可以使玻璃局部膨胀或收缩。为什么不用这种技术来调整反射镜的排列呢?因此,最初的蚀刻设计是让一面镜子位于一个刘海中,刘海中的微机械挠性设计可以在飞秒激光照射时局部搅拌镜子。这样,商用飞秒激光器就能被第二次使用,这次是为了校准反射镜,并最终制造出稳定的小型飞秒激光器。Bellouard说:"这种利用激光与物质相互作用对自由空间光学元件进行永久对准的方法可以扩展到各种光学电路,对准分辨率极高,可达亚纳米级。"应用及其他Galatea实验室正在进行的研究项目将探索如何在量子光学系统组装中使用这项技术,从而突破目前可实现的微型化和对准精度的极限。对准过程仍由人类操作员监督,通过练习,可能需要几个小时才能完成。尽管激光器体积很小,但其峰值功率可达约千瓦,发射脉冲的时间不到200飞秒,仅够光穿过人的头发。这项新颖的飞秒激光技术将由Cassio-P公司推出,该公司将由Galatea实验室的AntoineDelgoffe领导。Bellouard总结道:"飞秒激光器是可以自我复制的,那是否意味着我们已经到了自我克隆制造设备的阶段?"...PC版:https://www.cnbeta.com.tw/articles/soft/1399729.htm手机版:https://m.cnbeta.com.tw/view/1399729.htm

封面图片

机器人在活体肺组织内“半自主导航” 同时避开微小气道和血管等重要结构

机器人在活体肺组织内“半自主导航”同时避开微小气道和血管等重要结构半自主医疗机器人肺部的3个阶段。图片来源:KUNTZ等人/北卡罗来纳大学研究人员称,这项技术能够达到机器人支气管镜无法达到的目标。它会多给出额外的几厘米甚至几毫米的距离,这对于追踪肺部的小目标有很大帮助。该机器人由几个独立的组件组成。机械控制组件的原理是利用一种针,针向前和向后提供受控推力,并且针设计允许沿着弯曲路径转向。该针由镍钛合金制成,经过激光蚀刻以增加其灵活性,使其能轻松地穿过组织。当它向前移动时,针上的蚀刻使其能够轻松绕过障碍物。导管等其他附件可与针一起使用来执行肺活检等程序。为了穿过组织,针需要知道它要去哪里。研究团队利用受试者胸腔的CT扫描和人工智能创建了肺部的三维模型,包括气道、血管和选定的目标。使用这个3D模型,一旦针向靶标出发,人工智能驱动软件就会指示它自动从“A点”移动到“B点”,同时避开重要的结构。研究人员称,它类似于自动驾驶汽车,但它可通过肺组织进行导航,在到达目的地时避开重要血管等障碍物。...PC版:https://www.cnbeta.com.tw/articles/soft/1386327.htm手机版:https://m.cnbeta.com.tw/view/1386327.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人