新研发的纳米硅尖刺刺穿和摧毁常见病毒的有效率达96%

新研发的纳米硅尖刺刺穿和摧毁常见病毒的有效率达96%在人类副流感病毒(HPIV)的四种毒株中,HPIV-3的毒性最强,可导致婴幼儿支气管炎、气管炎或肺炎。HPIV-3感染每年都会季节性爆发,病毒通过空气传播或直接间接接触受污染的表面传播。目前还没有疫苗或抗病毒药物可以预防或治疗HPIV-3感染,因此保持一般卫生和表面卫生成为当务之急。现在,西班牙罗维拉-伊-维尔吉利大学(URV)和澳大利亚皇家墨尔本理工大学(RMITUniversity)的研究人员合作开发出了一种具有惊人病毒杀灭特性的加标硅表面。受蜻蜓翅膀的启发,皇家墨尔本理工大学的研究人员已经证明了使用钛制成的纳米级尖刺"机械杀菌"表面刺杀抗生素超级细菌的功效。同样,鲍林对拥有抗菌翅膀的昆虫也很熟悉。他说:"蜻蜓或蝉等昆虫的翅膀具有纳米结构,可以刺穿细菌和真菌。"但病毒不同。它们比细菌更小,因此用于杀死它们的纳米钉也需要更小。虽然重金属及其衍生物的抗病毒特性已得到深入研究,但由于金属离子的释放和活性氧的产生会破坏薄膜和蛋白质,病毒被认为是失活的。因此,在目前的研究中,研究人员选择使用掺硼硅片。该研究的通讯作者之一弗拉基米尔-鲍林(VladimirBaulin)说:"在这种情况下,我们使用硅,因为它在技术上没有其他金属那么复杂。"为了制造出尖锐的表面,他们使用了等离子体反应离子蚀刻法,这种工艺利用化学反应等离子体去除沉积在晶片上的材料,使研究人员能够微调纳米尖峰的高度和间距。最终形成的表面布满了2纳米厚的尖刺--3万个尖刺可以塞进人的头发里--仅高290纳米。HPIV-3病毒颗粒的直径在100纳米到420纳米之间。在扫描电子显微镜(SEM)下检查了与HPIV-3培养1、3和6小时的表面,结果表明,在未添加尖刺的硅表面上培养6小时后,病毒颗粒仍保持通常的形状。然而,在加有尖刺的表面上,HPIV-3颗粒的形状受到了影响;培养1小时和3小时后,尖刺的锋利尖端穿透了颗粒并使其变形。六小时后,颗粒变瘪。在每个时间点,纳米钉硅表面上的感染性病毒颗粒都有显著下降:一小时后下降74%,三小时后下降85%,六小时后下降96%。在对细菌进行测试时,研究人员发现纳米尖刺对它们也是致命的。它们能破坏两种常见的医院感染相关细菌--铜绿假单胞菌和金黄色葡萄球菌("金色葡萄球菌")的细胞,不过效果没有对HPIV-3那么大。培养18小时后,发现无法存活的铜绿假单胞菌和金黄色葡萄球菌的比例分别为15%和25%。研究结果证明了使用硅纳米钉作为杀病毒剂的有效性。研究人员预计,这项技术将应用于存放具有潜在危险的生物材料的实验室和医疗中心,从而使这些环境对研究人员、医务工作者和病人更加安全。该研究发表在《ACSNano》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1415303.htm手机版:https://m.cnbeta.com.tw/view/1415303.htm

相关推荐

封面图片

新型硅基"元表面"可快速检测毒素、病毒、癌症和其他疾病

新型硅基"元表面"可快速检测毒素、病毒、癌症和其他疾病研究人员已经成立了一家新公司(PumpkinseedBio),以便早日将上述技术推向市场。该技术由斯坦福大学的科学家开发,用于快速检测COVID-19病毒(SARS-CoV-2)的基因片段,采用了由微型硅盒阵列制成的"元表面"。这些盒子高500纳米,长600纳米,宽160纳米,可以在其表面聚焦近红外电磁辐射。这种聚焦光为光学显微镜检测来自每个盒子的波长偏移提供了一种更简便的方法,而波长偏移会因"坐在"上面的分子不同而变化。研究人员将含有22个核苷酸的基因片段系在硅盒上,将阵列浸泡在缓冲溶液中,以此测试他们的元表面。被拴住的基因片段随后能与加入溶液中的"互补"DNA片段结合。这些DNA链通过影响每个硅盒表面的电磁波长来显示它们的存在。斯坦福大学应用物理学家詹妮弗-迪昂(JenniferDionne)说,这种新型生物芯片可以检测到每微升中只有4000个拷贝的目标基因。研究人员说,这种装置不需要像众所周知的聚合酶链反应(PCR)那样耗时的复制技术,因为它的灵敏度足以检测到鼻腔样本中典型浓度的SARS-CoV-2病毒片段。这种生物芯片能在几分钟内检测出DNA链和蛋白质,还能提供有关感染强度的信息。研究人员说,这项技术既可用于临床诊断,也可用于实验室外的分子追踪,为环境科学家提供了一种"改变游戏规则"的基因探测解决方案。迪翁和同事们成立的PumpkinseedBio计划迅速将他们的研究成果商业化,目标是制造出一种能同时检测多种疾病生物标志物的生物芯片。据分子生物学家、蒙特雷湾水族馆研究所首席执行官克里斯-肖林(ChrisScholin)说,这项技术可以在环境探测方面发挥更大的作用,而在临床诊断方面,它还需要与几种竞争解决方案进行斗争。...PC版:https://www.cnbeta.com.tw/articles/soft/1377255.htm手机版:https://m.cnbeta.com.tw/view/1377255.htm

封面图片

科学家设计制造了一种具有抗病毒特性但不使用任何化学品的表面

科学家设计制造了一种具有抗病毒特性但不使用任何化学品的表面URV(西班牙维尔吉利大学塔拉戈纳公立大学)和皇家墨尔本理工大学开发的创新硅钉能有效中和96%的病毒,有望使实验室和医疗机构更加安全。图为纳米结构表面上的病毒。图片来源:ACSNano研究揭示了这些程序的工作原理,其有效率高达96%。在存在潜在危险生物材料的环境中使用这种技术,将使实验室更容易控制,对在实验室工作的专业人员也更安全。刺杀病毒-这个看似并不复杂的概念需要大量的专业技术知识,但它有一个最大的优点:无需使用化学药品,就能发挥巨大的杀毒潜能。制作杀病毒表面的过程从一块光滑的金属板开始,研究人员用离子轰击金属板,让表面上布满了2纳米粗细的针头,一根头发的范围内就有3万根,高290厘米。URV物理和无机化学系研究员弗拉基米尔-鲍林(VladimirBaulin)解释说:"在这种情况下,我们使用硅,因为它在技术上没有其他金属那么复杂。"这种方法对鲍林来说并不陌生,在过去的十年中,他一直在研究控制病原微生物的机械方法,其灵感来自于大自然的世界:"他解释说:"蜻蜓或蝉等昆虫的翅膀具有纳米结构,可以刺穿细菌和真菌。"然而,在这种情况下,病毒比细菌小一个数量级,因此针头必须相应地更小,才能对它们产生任何影响。本研究的对象hPIV-3就是一个例子,它会导致支气管炎、气管炎或肺炎等呼吸道感染。所谓的副流感病毒导致的急性呼吸道感染占所有急性呼吸道感染的三分之一,并与儿童的下呼吸道感染有关。鲍林说:"除了在流行病学上是一种重要的病毒外,它还是一种可以安全处理的模式病毒,因为它不会对成年人造成潜在的致命疾病。"研究小组从理论和实践两方面分析了病毒与纳米结构表面接触后失去传染能力的过程。URV的研究人员VladimirBaulin和VassilTzanov使用有限元法--一种分割病毒表面并独立处理每个片段的计算方法来模拟病毒与针头之间的相互作用及其后果。与此同时,皇家墨尔本理工大学的研究人员还进行了实际实验分析,将病毒暴露在纳米结构表面并观察结果。研究结果表明,这种方法非常有效,能在6小时内使接触表面的96%的病毒丧失能力。研究证实,表面之所以具有杀毒效果,是因为针头能够通过破坏病毒的外部结构或刺穿病毒膜来消灭病毒或使其丧失能力。在实验室或医疗中心等存在潜在危险生物材料的风险环境中使用这种技术,可以更容易地控制传染病,使这些环境对研究人员、医务工作者和病人更加安全。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418297.htm手机版:https://m.cnbeta.com.tw/view/1418297.htm

封面图片

新的纳米颗粒设计可能会改善mRNA疫苗对癌症的治疗效果

新的纳米颗粒设计可能会改善mRNA疫苗对癌症的治疗效果疫苗通过让身体做好对抗细菌或病毒等病原体的准备,帮助预防感染。大多数传统疫苗含有减弱或死亡的细菌或病毒,以触发免疫反应。然而,mRNA疫苗(例如COVID-19疫苗)的工作原理是引入一段与病毒外部的蛋白质相对应的mRNA,从而产生抗体并标记病毒以进行破坏。一旦产生,抗体就会保留在体内,因此如果免疫系统再次暴露于病原体,它可以快速做出反应。现在,约翰·霍普金斯大学医学院的研究人员进行的一项新研究可能找到了一种改善mRNA疫苗递送以治疗传染性和非传染性疾病的方法。当使用mRNA疫苗治疗癌症等非传染性疾病时,面临的挑战是将材料传递给大量树突状细胞,树突状细胞是一种特殊类型的免疫细胞,可教导免疫系统(特别是T细胞)寻找并摧毁癌细胞。该研究的通讯作者乔丹·格林(JordanGreen)表示:“免疫系统的设计目的是通过放大反应来发挥作用,树突状细胞会教导其他免疫细胞在体内寻找什么。”制造更强效的疫苗需要携带mRNA的纳米颗粒到达、进入树突状细胞并在其中表达。表达后,mRNA会降解,由此产生的免疫反应持续时间更长。COVID-19mRNA疫苗包含由脂质(一种脂肪酸)制成的纳米颗粒,注射到肌肉中。但是,肌肉中的树突状细胞相对较少。将mRNA疫苗注射到血液中也会导致输送问题,因为疫苗往往会直接进入肝脏,并在那里被分解。因此,研究人员将目光投向了一个树突状细胞数量远远多于的器官:脾脏。格林说:“我们的目标是开发一种不会直接发送到肝脏的纳米颗粒,它可以有效地教导免疫系统细胞寻找并摧毁适当的目标。”在测试了多种材料后,研究人员决定将其mRNA包裹在基于聚合物的纳米颗粒中,其中亲水分子和疏水分子的比例恰到好处,使其能够进入目标细胞。这些聚合物含有对特定组织类型具有亲和力的分子,这里是脾脏。此外,纳米颗粒中添加了辅助剂或佐剂以激活树突状细胞。他们在小鼠身上测试了他们的新型纳米颗粒结构,发现它避开了肝脏,并被脾细胞吸收,其水平比mRNA本身高出约50倍。纳米颗粒到达的脾细胞中近80%是目标树突状细胞。在经过基因工程改造的小鼠中,当纳米颗粒传递其mRNA内容物时,免疫细胞会发出红光,研究人员发现,脾脏中5%至6%的树突状细胞成功吸收、打开并处理了纳米颗粒。这种现象在树突状细胞中比在其他免疫细胞中更容易观察到。然后纳米粒子生物降解成安全的副产品。证明新的纳米颗粒能够成功地靶向脾脏的树突状细胞之后,研究人员为其配备了免疫治疗药物,并再次在小鼠身上进行了测试。他们发现,一半的结直肠癌小鼠模型在接受两次注射后长期存活,而接受其他含有免疫治疗药物的纳米颗粒制剂或单独免疫治疗药物治疗后,只有10%至30%的存活率。当幸存的小鼠被给予额外的结直肠癌细胞时,它们都无需额外治疗即可存活,这向研究人员表明,它们的纳米颗粒提供了长期免疫反应,可防止癌症复发。他们还发现,治疗21天后,60%的细胞杀伤T细胞识别并攻击结直肠癌细胞。研究人员在患有黑色素瘤的小鼠模型中发现了类似的反应,其中大约一半的同类型T细胞准备好攻击黑色素瘤细胞。Green说:“纳米颗粒输送系统能够创建一支能够识别癌症相关抗原的T细胞大军。这种新的纳米颗粒输送系统可能会改善传染病疫苗的接种方式,并且也可能为治疗癌症开辟一条新途径。”该研究发表在《PNAS》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1368037.htm手机版:https://m.cnbeta.com.tw/view/1368037.htm

封面图片

研究:碳纳米管提高了“纳米仿生”细菌太阳能电池的效率

研究:碳纳米管提高了“纳米仿生”细菌太阳能电池的效率瑞士洛桑联邦理工学院(EPFL)的工程师们发现了一种将碳纳米管插入光合细菌的方法,这大大提高了它们的电输出。它们甚至在分裂时将这些纳米管传给它们的后代,该团队称之为“遗传纳米仿生学”。PC版:https://www.cnbeta.com/articles/soft/1317903.htm手机版:https://m.cnbeta.com/view/1317903.htm

封面图片

日本研发出新型“纳米球”涂料 可减少飞机二氧化碳排放

日本研发出新型“纳米球”涂料可减少飞机二氧化碳排放飞机的重量越大,所需的燃料就越多,从而直接增加了航空公司的支出(然后向客户收费),以及燃烧为二氧化碳排入大气的燃料量。而新型“纳米球”涂料质量更轻,可以达到环保的效果。研究团队构建出特定大小的纳米晶体,然后创建出通俗的悬浮液,将结晶硅纳米颗粒与悬浮液混合在一起,制作出新型“纳米球”涂料。据悉,纳米球基墨水的颜色随团队改变纳米晶体的大小而变化。较大的颗粒会产生温暖的色调,如红色,而较小的颗粒则会显示出较冷的色调,如蓝色。...PC版:https://www.cnbeta.com.tw/articles/soft/1420245.htm手机版:https://m.cnbeta.com.tw/view/1420245.htm

封面图片

全新石墨烯纳米电子平台有望完美取代硅 芯片更小更高效

全新石墨烯纳米电子平台有望完美取代硅芯片更小更高效研究人员指出,“石墨烯的力量在于其平坦的二维结构,这种结构由已知最强的化学键结合在一起。相较于硅,石墨烯可微型化的程度更深、能以更高的速度运行并产生更少的热量。这意味着,原则上,单一的石墨烯芯片要比硅芯片内可封装更多器件。”为了创建新的纳米电子平台,研究人员在碳化硅晶体基板上创建了一种改良形式的外延石墨烯,用电子级碳化硅晶体生产了独特的碳化硅芯片。研究人员使用电子束光刻技术(微电子学中常用的一种方法)来雕刻石墨烯纳米结构,并将其边缘焊接到碳化硅芯片上。这一过程机械地稳定和密封石墨烯的边缘,否则它会与氧气和其他可能干扰沿边缘电荷运动的气体发生反应。最后,为了测量石墨烯平台的电子性能,该团队使用了一个低温设备,使他们能够记录从接近零摄氏度到室温下的特性。他们的研究成果已于近期发表在了《自然·通讯》杂志上。研究小组在石墨烯边缘态下观察到的电荷类似于光纤中的光子,可以在不散射的情况下长距离传播。他们发现电荷在散射之前沿边缘移动了数万纳米。在之前的技术中,石墨烯电子只能移动约10纳米,然后就会撞到小缺陷并向不同方向散射。在金属中,电流由带负电的电子传递。但与研究人员的预期相反,他们的测量表明,边缘电流不是由电子或空穴携带的。相反,电流是由一种不同寻常的准粒子携带的,这种准粒子既没有电荷也没有能量,但运动时没有阻力。尽管是单个物体,但观察到混合准粒子的成分在石墨烯边缘的相对侧移动。研究人员表示,其独特的性质表明,这种准粒子可能是物理学家几十年来一直希望利用的粒子——马约拉纳费米子。“在无缝连接的石墨烯网络中使用这种新的准粒子开发电子产品将改变游戏规则。”他们补充道,“我们可能还需要5到10年才能拥有第一个基于石墨烯的电子产品。但由于我们团队新的外延石墨烯平台,技术比以往任何时候都更接近让石墨烯成为硅的继承者。”...PC版:https://www.cnbeta.com.tw/articles/soft/1336115.htm手机版:https://m.cnbeta.com.tw/view/1336115.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人