脑器官组织"Brainoware"显示了新一代生物计算机的潜力

脑器官组织"Brainoware"显示了新一代生物计算机的潜力美国印第安纳大学布卢明顿分校的郭锋(音译)和研究团队通过在培养皿中培育成团的人类脑细胞,创造出了"大脑有机体"。然后,他们将这些生物有机体与计算机芯片连接起来,创建了Brainoware系统,该系统似乎可以在执行计算任务的同时与人工智能算法"对话",进行信号解码。这项研究最近发表在《自然-电子学》(NatureElectronics)上,描述了旨在模拟人脑结构和工作原理的"大脑启发计算硬件"。研究人员说,Brainoware具备处理、学习甚至记忆信息的潜力,可以为解决当前人工智能技术的局限性提供一种解决方案。虽然在硅芯片上运行的人工智能算法在处理大型数据集时效率极高(也很有效),但它们无法与人脑在消耗极少能量的情况下处理复杂信息的能力相媲美。而Brainoware中的大脑有机体是真正的脑细胞,可以发送和接收通过电信号编码的信息。当研究人员对Brainoware施加电刺激时,混合生物芯片装置会对这些信号做出反应。该系统所连接的神经网络也发生了变化,这表明该系统确实能够处理信息,甚至可以"在无人监管的情况下"执行计算任务。研究人员使用由八个人录制的240个日语元音发音片段,通过语音识别任务测试了Brainoware的所谓能力。这些片段被转换成电信号,然后输送给Brainoware,Brainoware产生电信号响应,随后输送给人工智能工具进行解码。类脑人工智能装置最终能够解码录音信号,但该技术提供的语音识别准确率"非常低"。通过进一步的训练,准确率提高到了87%,但与实际的全数字人工神经网络相比,准确率仍然较低。一些研究人员对新研究中描述的结果表示怀疑。约翰-霍普金斯大学公共卫生助理教授莉娜-斯米尔诺娃(LenaSmirnova)指出,大脑有机体无法真正"听到"语音;它们只能对电刺激做出反应。此外,这项研究也没有证明Brainoware能否以及如何长期处理和存储信息或学习多项任务。...PC版:https://www.cnbeta.com.tw/articles/soft/1404553.htm手机版:https://m.cnbeta.com.tw/view/1404553.htm

相关推荐

封面图片

"类器官智能" - 由人类脑细胞驱动的革命性生物计算机

"类器官智能"-由人类脑细胞驱动的革命性生物计算机人工智能(AI)长期以来一直受到人脑的启发。这种方法被证明是非常成功的。人工智能拥有令人印象深刻的成就--从诊断医疗状况到创作诗歌。尽管如此,原始模型仍然在许多方面优于机器。这就是为什么,例如,我们可以通过网上琐碎的图像测试"证明我们的人性"。如果我们不试图让人工智能更像大脑,而是直接从源头开始呢?跨越多个学科的科学家们正在努力创造革命性的生物计算机,其中脑细胞的三维培养物,称为脑器官,作为生物硬件。他们在《科学前沿》(FrontiersinScience)杂志上描述了他们实现这一愿景的路线图。实验室培养的大脑类器官的放大图像,带有不同类型细胞的荧光标记。(粉红色-神经元;红色-少突胶质细胞;绿色-星形胶质细胞;蓝色-所有细胞核)。资料来源:托马斯-哈通,约翰霍普金斯大学"我们把这个新的跨学科领域称为'类器官智能'(OI),"约翰霍普金斯大学的托马斯-哈同教授说。"一个由顶级科学家组成的团体已经聚集起来开发这项技术,我们相信它将开启一个快速、强大和高效的生物计算新时代。"什么是脑器官,为什么它们会成为强大的计算机?脑器官是一种实验室培养的细胞文化。尽管脑器官不是"迷你大脑",但它们共享大脑功能和结构的关键方面,如神经元和其他脑细胞,它们对学习和记忆等认知功能至关重要。此外,大多数细胞培养物是平坦的,而类器官有一个三维结构。这使培养物的细胞密度增加了1000倍,意味着神经元可以形成更多的连接。但是,即使大脑器官是对大脑的良好模仿,为什么它们会成为好的计算机?毕竟,计算机不是比大脑更聪明和更快吗?类器官智能。生物计算的新领域信息图。资料来源:Frontiers/约翰霍普金斯大学哈同解释说:"虽然硅基计算机在数字方面当然更好,但大脑在学习方面更好。例如,AlphaGo[在2017年击败世界头号围棋选手的人工智能]是根据16万场比赛的数据训练的。一个人必须每天下5个小时,超过175年才能经历这些游戏。"大脑不仅是卓越的学习者,它们也更节能。例如,训练AlphaGo所花费的能量比维持一个活跃的成年人十年所需的能量还要多。"大脑还具有惊人的存储信息的能力,估计有2500TB,我们正在达到硅计算机的物理极限,因为我们无法将更多的晶体管装入一个小小的芯片。但是大脑的接线方式完全不同。它有大约1000亿个神经元,通过超过1015个连接点连接。与我们目前的技术相比,这是一个巨大的功率差异。"类器官智能生物计算的新领域信息图类器官智能生物计算机会是什么样子?根据哈通的说法,目前的大脑有机体需要扩大规模以实现有机体智能。"他们太小了,每个都包含大约5万个细胞。他解释说:"对于有机智能,我们需要将这个数字增加到1000万。同时,作者们还在开发与有机体沟通的技术:换句话说,向它们发送信息并读出它们的"想法"。作者计划从不同的科学学科中调整工具,如生物工程和机器学习,以及设计新的刺激和记录设备。类器官智能需要不同的技术来与大脑类器官沟通信息图。资料来源:Frontiers/约翰霍普金斯大学"我们开发了一种脑机接口设备,这是一种用于有机体的脑电图帽,我们在去年8月发表的一篇文章中介绍了它。它有着一个灵活的外壳,上面密布着微小的电极,既能接收来自类器官的信号,又能向它传输信号,"哈同说。作者设想,最终,OI将整合广泛的刺激和记录工具。这些将协调相互连接的类器官网络之间的互动,实现更复杂的计算。有机体智能可以帮助预防和治疗神经系统疾病有机体智能的前景超越了计算,进入了医学领域。由于诺贝尔奖获得者约翰-格登和山中伸弥开发的一项突破性技术,大脑有机体可以从成人组织中产生。这意味着科学家们可以从患有神经疾病(如阿尔茨海默病)的病人的皮肤样本中开发出个性化的脑器官。然后他们可以进行多种测试,研究遗传因素、药物和毒素如何影响这些病症。类器官智能将推动医学研究和创新信息图"通过有机体智能,我们也可以研究神经系统疾病的认知方面,"哈同说。"例如,我们可以比较来自健康人和阿尔茨海默氏症患者的器官中的记忆形成,并尝试修复相对的缺陷。我们还可以使用有机体来测试某些物质,如杀虫剂,是否会导致记忆或学习问题。"考虑到伦理因素创造能够学习、记忆和与环境互动的人脑器官,会引发复杂的伦理问题。例如,他们能否发展出意识,即使是最基本的形式?他们能不能体验到疼痛或痛苦?人们对由其细胞制成的脑器官有什么权利?"嵌入式伦理学"将确保负责任地开发类器官智能信息图。资料来源:Frontiers/约翰霍普金斯大学作者敏锐地意识到了这些问题:"我们愿景的一个关键部分是以道德和社会责任的方式开发有机体智能,为此,我们从一开始就与伦理学家合作,建立一个'嵌入式伦理'方法。随着研究的发展,所有的伦理问题都将由科学家、伦理学家和公众组成的团队持续评估。"我们离第一个有机体智能还有多远?尽管有机体智能仍处于起步阶段,该文章的共同作者之一--皮质实验室的布雷特-卡根博士最近发表的一项研究提供了概念的证明。他的团队表明,一个正常的、扁平的脑细胞培养物可以学习玩视频游戏Pong。...PC版:https://www.cnbeta.com.tw/articles/soft/1347995.htm手机版:https://m.cnbeta.com.tw/view/1347995.htm

封面图片

计算的未来包括生物学 由人类脑细胞驱动的人工智能计算机

计算的未来包括生物学由人类脑细胞驱动的人工智能计算机在2月27日发表在《科学前沿》杂志上的一篇文章中,该团队概述了生物计算机如何在某些应用中超越今天的电子计算机,同时使用今天的计算机和服务器群所需电力的一小部分。类器官智能(OI)是一个新兴的科学领域,旨在创建生物计算机,其中实验室培养的大脑类器官作为"生物硬件"。在发表于《科学前沿》的文章中,Smirnova等人概述了追求这一愿景所需的多学科战略:从下一代器官和脑机接口技术,到新的机器学习算法和大数据基础设施。他们从制造由干细胞培育的5万个脑细胞组成的小集群开始,这些细胞被称为有机体。这大约是一个果蝇大脑的三分之一大小。他们的目标是1000万个神经元,这将是一个乌龟大脑中的神经元数量。相比之下,人类大脑平均有超过800亿个神经元。这篇文章强调了人脑如何在特定任务中继续大规模地超越机器。例如,人类只需使用几个样本就能学会区分两种类型的物体(如狗和猫),而人工智能算法则需要成千上万个。而且,虽然人工智能在2016年击败了围棋世界冠军,但它是在16万场比赛的数据基础上训练出来的--相当于每天下5个小时,超过175年。大脑有机体资料来源:约翰霍普金斯大学大脑也更加节能。我们的大脑被认为能够储存相当于普通家用电脑100多万倍的容量(2.5PB),而使用的电力只相当于几瓦。相比之下,美国的数据农场每年使用超过15000兆瓦的电力,其中大部分是由几十个燃煤发电站产生的。在这篇论文中,作者概述了他们的"类器官智能"计划,或称OI,用细胞培养的大脑类器官。虽然脑器官不是"迷你大脑",但它们在大脑功能和结构的关键方面是相同的。器官体将需要从目前的大约5万个细胞大幅扩展。"高级作者、巴尔的摩约翰-霍普金斯大学的托马斯-哈同教授说:"对于OI,我们需要将这个数字增加到1000万。布雷特-卡根博士资料来源:Cortical实验室布雷特和他在Cortical实验室的同事已经证明,基于人类脑细胞的生物计算机是可能的。最近发表在《神经元》上的一篇论文显示,脑细胞的平面培养可以学习玩视频游戏Pong。"我们已经证明,我们可以与活的生物神经元互动,迫使它们修改它们的活动,导致类似于智能的东西,"卡根谈到相对简单Ponf游戏的DishBrain时说。"与哈同教授及其同事为这个有机体智能合作而组建的惊人团队合作,皮质实验室现在正试图用大脑有机体复制这项工作。""我想说,用有机体复制[皮质实验室]的实验已经满足了OI的基本定义,"托马斯说。从这里开始,它开始一个建立社区、工具和技术的问题,以实现OI的全部潜力。布雷特说:"这个新的生物计算领域有望在计算速度、处理能力、数据效率和存储能力方面取得前所未有的进步--所有这些都需要较低的能源。这项合作特别令人激动的方面是其形成的开放和协作精神。将这些不同的专家聚集在一起,不仅对优化成功至关重要,而且为行业合作提供了一个关键的接触点"。而这项技术还可以使科学家们更好地研究从患有神经疾病(如阿尔茨海默病)的病人的皮肤或小血样中开发出来的个性化大脑器官,并进行测试,研究遗传因素、药物和毒素如何影响这些情况。...PC版:https://www.cnbeta.com.tw/articles/soft/1348871.htm手机版:https://m.cnbeta.com.tw/view/1348871.htm

封面图片

科学家计划用真正的脑细胞建造下一代超级计算机

科学家计划用真正的脑细胞建造下一代超级计算机研究人员正在用脑器官进行实验,它是脑细胞的三维培养物,模仿完全发育的器官的功能,作为生物计算硬件的处理中心。被称为"类器官智能",参与该项目的实验室培养的脑细胞器官能够保留核心认知功能,如记忆和学习。该团队指出,硅基计算机擅长处理数字,但它们在学习方面不如人脑好。此外,大脑的能效大大提高,而且组成的神经元可以在有限的空间内同时存储数量极大的信息。小规模的开始,雄心勃勃的目标大脑生物体的放大图像杰西-普罗特金/约翰霍普金斯大学目前,每个类器官包含大约5万个脑细胞,但为了达到理想的计算能力水平,该团队的目标是培养出包含大约1000万个脑细胞的类器官。同时,研究小组还在研究与这些器官体进行有效沟通的途径系统,以转达信息并了解这些细胞集群的想法。托马斯-哈通教授解释说:"这是一个灵活的外壳,上面密布着微小的电极,既能接收来自类器官的信号,又能向其传递信号。最终目标是开发刺激和记录工具,以控制有机体网络之间的互动。"就进展而言,该团队已经证明,一个扁平的脑细胞培养物能够学习和玩乒乓球游戏。整个"类器官智能"的概念仍处于起步阶段,但从事这项工作的团队相信,在不久的将来,生物计算将彻底改变神经疾病的药物测试研究等领域。...PC版:https://www.cnbeta.com.tw/articles/soft/1347051.htm手机版:https://m.cnbeta.com.tw/view/1347051.htm

封面图片

内置人类脑组织的计算机芯片研发工作获得军方资助

内置人类脑组织的计算机芯片研发工作获得军方资助DishBrain核心的微电极阵列既能读取脑细胞的活动,也能用电信号刺激它们,因此研究小组设置了一个版本的乒乓球游戏,向脑细胞输入移动的电信号,以表示球在"屏幕"的哪一边,以及离球拍有多远。他们让脑细胞作用于球拍,使其左右移动。然后,他们利用小群脑细胞倾向于尽量减少环境中的不可预测性这一事实,建立了一个非常基本的奖励系统。因此,如果球拍击中了球,细胞就会收到一个很好的、可预测的刺激。但如果球没打中,细胞就会受到四秒钟完全不可预测的刺激。这是实验室培育的脑细胞第一次被这样使用,它们不仅能感知世界,还能采取行动,结果令人印象深刻。在电极阵列上生长的DishBrain神经元的扫描电子显微镜图像这项与墨尔本初创公司皮质实验室(CorticalLabs)合作开展的研究令人印象深刻,目前已获得澳大利亚国家情报与安全发现研究资助计划(NationalIntelligenceandSecurityDiscoveryResearchGrantsprogram)40.7万美元的资助。项目负责人阿迪尔-拉齐(AdeelRazi)副教授说:"这些融合了生物计算与人工智能的可编程芯片未来可能最终超越现有的纯硅基硬件的性能。这些研究成果将对规划、机器人、先进自动化、脑机接口和药物研发等多个领域产生重大影响,从而为澳大利亚带来巨大的战略优势。"DishBrain内神经元的显微镜图像,细胞使用荧光标记突出显示换句话说,DishBrain的高级学习能力可以支撑新一代的机器学习,尤其是在自动驾驶汽车、无人机和机器人中。拉齐说:"它可以为它们提供一种新型的机器智能,能够在整个生命周期内进行学习。"这项技术有望让机器在不损害旧能力的情况下不断学习新能力,能够很好地适应变化,并能将旧知识映射到新情况中,同时不断自我优化计算能力、内存和能源的使用。"我们将利用这笔资金,开发出更好的人工智能机器,复制这些生物神经网络的学习能力。这将帮助我们扩大硬件和方法的能力,使它们成为硅计算的可行替代品。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372287.htm手机版:https://m.cnbeta.com.tw/view/1372287.htm

封面图片

研究人员正试图用在实验室中生长的"迷你大脑"构建生物计算机

研究人员正试图用在实验室中生长的"迷你大脑"构建生物计算机论文解释说,这个新术语旨在将该领域确立为一种"真正的生物计算形式,以"道德上负责任的方式利用科学和生物工程的进步来驾驭大脑器官"。这些新的生物计算机是由实验室培养的迷你大脑组成的,基本上是由干细胞组成的小型3D物体。这些细胞被设计成模仿大脑的形状,以及大脑的学习能力。科学家们希望,这些生物计算机可以代表计算机能力的巨大飞跃。这是因为硅基计算机在数字方面非常出色。但是,大脑本身在学习方面要有效得多。利用实验室培育的迷你大脑的生物计算机有望将该领域推到聚光灯下。科学家已经教会这些迷你脑生物计算机如何做一些不同的事情。例如,我们已经看到盘子里的脑细胞学会了玩经典的Pong游戏,展示了与传统计算机和人工智能相比,这些生物计算机的学习速度有多快。去年年底,我们还看到科学家们在一个实验中把实验室培育的迷你大脑与活老鼠的大脑结合起来。该领域内的这些动向绝非毫无关联,因为它们显示了这些迷你大脑的整体计算和学习能力比传统计算机系统更快。当然,将它们的规模扩大到目前的能力之外是研究人员必须考虑的另一个因素。不过,与此同时,这些在实验室里生长的迷你大脑已经显示出非凡的前景。有机体智能领域可能刚刚开始破冰,但到目前为止,它已经显示出一些令人兴奋的主张,一旦扩大规模并加以改进,可能有助于将计算推向一个全新的水平。...PC版:https://www.cnbeta.com.tw/articles/soft/1347631.htm手机版:https://m.cnbeta.com.tw/view/1347631.htm

封面图片

集成 16 个类脑器官 全球首个生物计算平台上线

集成16个类脑器官全球首个生物计算平台上线近日,瑞士生物计算初创公司FinalSpark推出了全球第一个基于体外生物神经元的在线生物计算平台“Neuroplatform”,能够进行学习和处理信息,相比传统数字处理器的功耗低了100万倍。Neuroplatform由16个类脑器官组成,其中每4个使用多电极阵列(MEA)来容纳活体组织,即脑组织的3D细胞团。换言之,每个MEA可容纳四个有机体,总共使用8个电极连接,用于刺激和记录。(科技新报)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人