从暗物质到明亮恒星:韦伯望远镜和 Renaissance模拟揭示早期宇宙

从暗物质到明亮恒星:韦伯望远镜和Renaissance模拟揭示早期宇宙研究人员开发了一种新的早期宇宙计算机模拟,与詹姆斯-韦伯太空望远镜(JWST)的观测结果非常吻合。JWST的初步观测结果表明,我们对早期星系形成的理解可能存在一些问题。JWST研究的第一批星系似乎比理论预期的更亮、质量更大。爱尔兰梅努斯大学(MaynoothUniversity)的研究人员与佐治亚理工学院(GeorgiaInstituteofTechnology)的合作者最近在《天体物理学开放期刊》(TheOpenJournalofAstrophysics)上发表了这一引人入胜的发现,表明JWST的观测结果与理论预期并不矛盾。研究小组使用的所谓"Renaissance"是一系列高度复杂的计算机模拟,模拟早期宇宙中星系的形成。研究人员开发了一种新的早期宇宙计算机模拟,与詹姆斯-韦伯太空望远镜(JWST)的观测结果非常吻合。图片来源:NASA、ESA、S.Beckwith(STScI)和HUDF团队这种模拟手段可以分辨出非常小的暗物质团块,并能追踪这些团块凝结并形成暗物质晕,然后承载我们观测到的星系类型。模拟还可以模拟宇宙中最早形成的恒星--第三族群恒星--的形成过程,这些恒星预计比现在的恒星质量大得多,亮度也高得多。马萨诸塞大学研究小组使用的模拟结果表明,这些星系与决定宇宙学模拟物理的模型是一致的。在谈到这些发现时,第一作者、梅努斯大学理论物理系博士生乔-麦卡弗里(JoeM.McCaffrey)说:"我们已经证明,这些模拟对于了解我们在宇宙中的起源至关重要。未来,我们希望利用同样的模拟来研究早期宇宙中大质量黑洞的成长。"梅努斯大学理论物理系副教授约翰-雷根博士在谈到他的研究团队的研究和未来方向时说:"JWST彻底改变了我们对早期宇宙的认识。利用其惊人的能力,我们现在能够一窥宇宙大爆炸后几亿年时的宇宙--那时宇宙的年龄还不到现在的1%。""JWST向我们展示的是,年轻的宇宙正在迸发出大量恒星形成和不断演化的大质量黑洞。下一步将利用这些观测结果来指导我们的理论模型--直到最近,这还是一件根本不可能的事情。"...PC版:https://www.cnbeta.com.tw/articles/soft/1393225.htm手机版:https://m.cnbeta.com.tw/view/1393225.htm

相关推荐

封面图片

詹姆斯·韦伯望远镜刚刚发现了两个来自宇宙早期的异常明亮的星系

詹姆斯·韦伯望远镜刚刚发现了两个来自宇宙早期的异常明亮的星系被确认的最遥远的星系被称为GLASS-z12,被认为是大爆炸后3.5亿年的产物。这些星系是在JWST的两个计划中发现的,即GLASS-JWST早期发布科学计划(来自太空的光栅放大测量)和宇宙进化早期发布科学调查(CEERS)。来自这些调查的数据确定了具有高红移的星系,这意味着由于宇宙的膨胀,来自它们的光被转移到光谱的红端。红移越大,光线在到达我们面前时已经走得越远,因此星系越老。红移越大,光线在到达我们之前已经走得越远。为了识别最古老的星系,研究人员首先观察JWST拍摄的图像,并根据其颜色选择感兴趣的星系。他们寻找那些没有出现在可见光波段但却出现在JWST红外范围内的星系。这意味着一个星系被红移了很多,以至于它的光已经移出了可见光范围,使它有可能成为一个非常早期的星系。挑战在于,还有其他原因导致一个星系可能不会出现在可见光图像中。例如,光学光线可能被灰尘阻挡,或者一个星系可能只是异常的红色。为了确认一个特定的星系真的非常古老,我们需要更多光谱学形式的数据。CEERS的共同研究者JeyhanKartaltepe说:"获得光源的光谱,当我们看到来自不同元素的发射线时,它真的告诉我们我们在看什么。因此,这是我们需要遵循的金标准。"最近宣布的两个星系还没有得到光谱测量的确认,但是最遥远的星系已经被ALMA(阿塔卡马大型毫米/亚毫米阵列)的数据初步确认。随着校准的完善,研究人员对JWST早期数据的准确性进行了一些检讨。一些非常早期的结果公布了红移高达13的星系,但是这个数字现在已经随着更精确的校准被细化为12.5。这是因为最早的数据是基于在地面上进行的校准,而最近的数据反映了10月份望远镜在太空中时进行的校准。校准JWST的仪器是一个漫长的过程,随着时间的推移,读数将变得更加精确。除了证实这些发现之外,收集这些目标的光谱学数据将使人们更深入地了解早期星系的内容。"这就像使用一个棱镜,我们能够看到不同原子元素的指纹,这些元素在星系的光谱中具有不同的颜色,"GLASS-JWST的共同研究者AlainaHenry解释说。"因此,我们得到了关于星系内容、它们形成恒星的速度以及气体运动的更详细的信息。"就目前而言,这些早期星系的极端亮度正在使天文学家们重新思考他们对最早的恒星的假设。虽然非常明亮的星系通常质量非常大,但可能这些早期明亮的星系并没有那么大的质量--它们只是充满了III类恒星。III类恒星仍然是假设性的,但这个想法是,它们是最早的恒星之一,其成分与我们今天看到的恒星不同。这开启了一个关于恒星的性质以及它们如何形成的课题,以及在非常早期形成的恒星的类型。...PC版:https://www.cnbeta.com.tw/articles/soft/1333159.htm手机版:https://m.cnbeta.com.tw/view/1333159.htm

封面图片

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程这幅插图显示了一个在宇宙大爆炸后几亿年才形成的星系,在重离子时代,气体是透明和不透明的混合体。来自美国宇航局詹姆斯-韦伯太空望远镜的数据显示,这些早期星系附近存在大量冷的中性气体--而且这些气体的密度可能比预想的要高。韦伯望远镜在2022年开始观测几个月后,作为其宇宙演化早期释放科学(CEERS)调查的一部分观测到了这些星系。CEERS包括图像和来自其NIRSpec(近红外摄谱仪)上微型遮光器的光谱数据。作为韦伯早期发布科学(ERS)计划的一部分,CEERS的数据被立即发布,以支持类似的发现。资料来源:NASA、ESA、CSA、JosephOlmsted(STScI)这一发现是利用詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)完成的,该望远镜为我们地球上的人们带来了对形成中星系的首次"实时观测"。通过这架望远镜,研究人员能够看到大量气体发出的信号,这些气体在形成过程中不断积累并吸附到一个小型星系上。虽然根据理论和计算机模拟,星系就是这样形成的,但实际情况却从未出现过。"可以说,这是我们看到的第一张'直接'拍摄的星系形成图像。詹姆斯-韦伯之前向我们展示的是处于演化后期的早期星系,而在这里,我们见证了它们的诞生,从而也见证了宇宙中第一批恒星系统的构建。"尼尔斯-玻尔研究所的卡斯帕-埃尔姆-海因茨助理教授说,他领导了这项新研究。这项研究发表在备受推崇的科学杂志《科学》上。他们是如何做到的:研究人员利用复杂的模型,研究了来自这些星系的光线是如何被其内部和周围的中性气体吸收的,从而能够测量出宇宙第一批星系的形成过程。这种转变被称为莱曼-阿尔法转变。通过测量光线,研究人员能够将新形成的星系中的气体与其他气体区分开来。这些测量结果之所以能够实现,要归功于詹姆斯-韦伯太空望远镜极其灵敏的红外摄谱仪功能。大爆炸后不久诞生的星系研究人员估计,这三个星系的诞生大约发生在宇宙大爆炸之后的4-6亿年。虽然这听起来像是一个很长的时间,但它相当于在宇宙138亿年总寿命的前3%到4%的时间里形成的星系。宇宙大爆炸后不久,宇宙还是一团由氢原子组成的巨大不透明气体--与今天不同的是,今天的夜空中布满了轮廓分明的恒星。"在宇宙大爆炸后的几亿年里,第一批恒星形成,之后恒星和气体开始凝聚成星系。"达拉赫-沃森(DarachWatson)副教授解释说:"这就是我们在观测中看到的开始过程。"星系的诞生发生在宇宙历史上被称为"再电离纪元"的时期,当时一些第一批星系的能量和光线冲破了氢气迷雾。研究人员正是利用詹姆斯-韦伯太空望远镜的红外视觉捕捉到了这些大量的氢气。这是迄今为止科研人员发现的对寒冷的中性氢气最遥远的测量,氢气是恒星和星系的组成部分。关于早期宇宙宇宙的"生命"始于大约138亿年前的一次巨大爆炸--宇宙大爆炸。这一事件产生了大量的亚原子粒子,如夸克和电子。这些粒子聚集在一起形成质子和中子,随后凝聚成原子核。宇宙大爆炸后大约38万年,电子开始围绕原子核运行,宇宙中最简单的原子逐渐形成。第一批恒星是在几亿年后形成的。在这些恒星的内部,形成了我们周围更大、更复杂的原子。后来,恒星凝聚成星系。我们已知最古老的星系是在宇宙大爆炸后大约3-4亿年形成的。我们的太阳系诞生于大约46亿年前--宇宙大爆炸后90多亿年。进一步了解我们的起源这项研究是由卡斯帕-埃尔姆-海因茨(KasperElmHeintz)与哥本哈根大学尼尔斯-玻尔研究所宇宙曙光中心的研究同事达拉赫-沃森(DarachWatson)、加布里埃尔-布拉莫尔(GabrielBrammer)和博士生西蒙妮-维加尔(SimoneVejlgaard)等人密切合作完成的。这项最新成果让他们离实现这一目标更近了一步。研究小组已经申请了更多的詹姆斯-韦伯太空望远镜的观测时间,希望能够扩大他们的新成果,了解更多关于星系形成的最早时代的信息。"目前,我们正在绘制新观测到的星系形成图,其细节比以前更加丰富。与此同时,我们也在不断尝试突破我们所能看到的宇宙的极限。因此,也许我们会走得更远,"SimoneVejlgaard说。研究人员认为,新知识有助于回答人类最基本的问题之一。"我们人类一直在问的一个最基本的问题是:'我们从哪里来?'在这里,我们通过揭示宇宙中一些最初的结构产生的时刻,拼凑出了更多的答案。"加布里埃尔-布拉莫尔(GabrielBrammer)副教授总结说:"我们将进一步研究这个过程,希望能够拼凑出更多的拼图碎片。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433169.htm手机版:https://m.cnbeta.com.tw/view/1433169.htm

封面图片

詹姆斯·韦伯太空望远镜首次揭示出在早期星系附近隐藏的伴星系

詹姆斯·韦伯太空望远镜首次揭示出在早期星系附近隐藏的伴星系研究人员能够确定,这两个星系与地球的距离大致相同,并且处于同一邻域,这表明它们可能会相互作用并可能合并。这些星系的成熟金属性使科学家们推测,恒星的形成一定是非常有效的,并且在宇宙中很早就开始了。在扫描美国宇航局詹姆斯-韦伯太空望远镜(JWST)拍摄的一个著名的早期星系的首批图像时,康奈尔大学的天文学家们很感兴趣地看到了靠近其外缘的一个光团。他们最初的关注点以及红外观测站的目标是SPT0418-47,这是早期宇宙中最明亮的尘埃、恒星形成的星系之一,其远处的光线被一个前景星系的引力弯曲并放大成一个圆,称为爱因斯坦环。但是,对去年秋天发布的早期JWST数据的深入研究产生了一个偶然的发现:一个以前隐藏在前景星系光线后面的伴生星系,尽管它的年龄很小,估计为14亿年,但令人惊讶的是,它似乎已经承载了多代恒星。詹姆斯-韦伯太空望远镜的艺术画。来源:美国国家航空航天局康奈尔大学天体物理学和行星科学中心(CCAPS)的副研究员、论文第二作者AmitVishwas博士说,智利阿塔卡马大型毫米/亚毫米阵列(ALMA)拍摄的同一爱因斯坦环的早期图像含有被JSWT清晰解析的伴星的暗示,但它们不能被解释为除了随机噪音以外的东西。通过调查JWST的NIRSpec仪器所拍摄的图像中每个像素的光谱数据,研究人员Peng发现了环内的第二个新光源。他确定这两个新的光源是一个新星系的图像,它被负责创造环的同一个前景星系所引力,尽管它们的亮度要低8到16倍--这证明了JWST红外视觉的强大。对光的化学成分的进一步分析证实,来自氢、氮和硫原子的强发射线显示了类似的红移--这是衡量一个星系的光在越来越远的情况下延伸到更长、更红的波长的一个标准。这使得这两个星系与地球的距离大致相同--计算出的红移约为4.2,或约为宇宙年龄的10%--并且处于同一附近。为了验证他们的发现,研究人员回到了早期的ALMA观测。他们发现一条电离碳的发射线与JWST观测到的红移密切相关。Vishwas说:"我们有几条发射线的移位完全相同,所以毫无疑问,这个新星系就是我们认为的地方。"研究小组估计,这个被他们命名为SPT0418-SE的伴生星系在环的50千秒差距(Parszek)以内(秒差距是一个宇宙距离尺度,用以测量太阳系以外天体的长度单位。1秒差距约为3.26光年、206,000天文单位或31兆公里),这种级别的接近表明,这些星系必然会相互影响,甚至可能合并,这种观察增加了人们对早期星系如何演变为更大星系的理解。作为早期宇宙中的星系,这两个星系的质量并不高,其中"SE"相对较小,尘埃较少,这使得它看起来比极度被尘埃遮挡的环更蓝。根据附近具有类似颜色的星系的图像,研究人员认为它们可能居住在"一个具有尚未被发现的邻居的大规模暗物质晕中"。考虑到这些星系的年龄和质量,最令人惊讶的是它们的成熟金属性--比氦和氢更重的元素的数量,如碳、氧和氮--该小组估计与我们的太阳相似。与太阳相比,它大约有40亿年的历史,并且从前几代恒星那里继承了大部分金属,这些恒星大约有80亿年的时间来建立它们,我们是在宇宙不到15亿年的时候观察这些星系。研究人员已经提交了一份关于JWST观测时间的提案,以继续研究该星环及其伴星,并调和光学和远红外光谱之间观察到的潜在差异。...PC版:https://www.cnbeta.com.tw/articles/soft/1355239.htm手机版:https://m.cnbeta.com.tw/view/1355239.htm

封面图片

韦伯望远镜揭开120亿年前恒星形成星系的秘密

韦伯望远镜揭开120亿年前恒星形成星系的秘密詹姆斯-韦伯太空望远镜(JWST)拍摄的新图像让澳大利亚天文学家揭开了宇宙早期星系如何开始恒星形成爆炸的秘密。一些早期星系充斥着大量气体,它们发出的光亮超过了新出现的恒星。在一项新的研究中,天文学家发现了这些明亮的星系在大约120亿年前是多么的普遍。来自JWST的图像显示,宇宙早期几乎90%的星系都有这种发光气体,产生所谓的"极端发射线特征"。一个遥远的极端发射线星系的图像。由詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)拍摄。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。"这些年轻星系中的恒星非常了不起,它们能产生恰到好处的辐射来激发周围的气体。这些气体反过来比恒星本身更加闪亮,"ARC三维全天空天体物理学卓越中心(ASTRO3D)和国际射电天文学研究中心(ICRAR)科廷大学节点的安舒-古普塔(AnshuGupta)博士说,他是描述这一发现的论文的第一作者。"直到现在,要了解这些星系是如何积累如此多的气体还很困难。我们的发现表明,这些星系中的每一个都至少有一个近邻星系。这些星系之间的相互作用会导致气体冷却,引发强烈的恒星形成,从而产生这种极端的发射特征。"观测早期宇宙星系的进展这一发现是一个生动的例子,说明JWST望远镜在研究早期宇宙方面提供了无与伦比的清晰度。"詹姆斯-韦伯望远镜的数据质量非常出色,"古普塔博士说。"它具有足够的深度和分辨率来观察早期星系周围的邻居和环境,当时宇宙只有20亿年的历史。利用这一细节,我们能够看到具有极端发射特征的星系和不具有极端发射特征的星系在邻近星系数量上的明显差异。"詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)看到的目标星系。JWST图像前所未有的分辨率和清晰度,让我们可以识别出哈勃都无法看到的邻近星系(青色圆圈)。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。在此之前,我们很难清楚地看到宇宙诞生20亿年左右的星系。由于当时许多恒星尚未形成,可关注的星系数量较少,因此这项任务变得更加困难。古普塔博士说:"在JWST出现之前,我们只能真正了解大质量星系的情况,而这些星系大多处于非常密集的星系团中,因此研究起来比较困难。以当时的技术,我们无法观测到这项研究中95%的星系。詹姆斯-韦伯望远镜彻底改变了我们的工作。"一个遥远的极端发射线星系的图像。由詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)拍摄。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。证实之前的假设ASTRO3D和哈佛大学及史密森尼天体物理学中心的副主任Tran说,这一发现证明了之前的假设。她说:"我们怀疑这些极端星系是早期宇宙中激烈相互作用的标志,但只有借助JWST的锐利目光,我们才能证实我们的预感。"这项研究依靠的是作为JWST高级深河外星系巡天(JADES)的一部分获得的数据,JADES正在利用深红外成像和多天体光谱探索宇宙中最早的星系。它为进一步深入了解宇宙开辟了道路。遥远的极发射线星系图像。詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)所见。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。"这幅作品真正令人兴奋的地方在于,我们看到了最早的星系与最近形成的星系之间的发射线相似性,而且更容易测量。这意味着我们现在有了更多的方法来回答关于早期宇宙的问题,而这一时期在技术上是很难研究的,"第二作者、科廷大学/ICRAR和ASTRO3D的博士生RaviJaiswar说。"这项研究是我们星系演化计划的核心工作。通过了解早期星系的面貌,我们可以在此基础上回答构成我们地球上日常生活中一切的元素的起源问题,"ASTRO3D主任EmmaRyan-Weber教授说。...PC版:https://www.cnbeta.com.tw/articles/soft/1396735.htm手机版:https://m.cnbeta.com.tw/view/1396735.htm

封面图片

韦伯望远镜揭示了低质量星系在早期宇宙再电离过程中的关键作用

韦伯望远镜揭示了低质量星系在早期宇宙再电离过程中的关键作用包括两位宾夕法尼亚州立大学天体物理学家在内的国际研究小组最近在《自然》杂志上发表了他们的研究成果。这些光谱揭示了宇宙中被称为再电离时期的一些最初的可见光,该时期的动力来自最早的恒星和星系的到来。美国国家航空航天局詹姆斯-韦伯太空望远镜(NASA'sJamesWebbSpaceTelescope)拍摄的深场图像首次提供了超微弱星系的一瞥,研究人员将这些星系确定为引发宇宙再电离的天体的有力候选者。图片来源:HakimAtek/索邦大学/JWST原始宇宙从黑暗到光明的过渡论文作者、宾夕法尼亚州立大学天文学和天体物理学助理教授乔尔-莱亚解释说,宇宙中的正常物质最初是一团炙热的浓雾,几乎完全由氢原子核和氦原子核组成。随着它的膨胀和冷却,孤质子和电子开始结合,第一次形成了中性氢。然后,在宇宙大爆炸发生后大约5亿至9亿年,在早期宇宙中占主导地位的中性氢开始再次分离成电离气体,从而促进了恒星和星系的诞生,并拨开了原始迷雾,使光线第一次可以畅通无阻地穿过宇宙。莱亚说:"有一些东西开始向星际虚空泵送高能光子。这些光源就像宇宙灯塔,烧掉了中性氢的雾气。不管是什么,它的能量如此之大,如此持久,以至于整个宇宙都重新电离了。"通过分析年轻的低质量星系的光谱,科学家们证明,小型星系是引发宇宙再电离的"东西"的有力候选者,它们加热了周围致密的原始气体,并电离了曾经中性的氢。"如果宇宙中的其他低质量星系也像这些星系一样常见和充满能量,那么我们认为我们终于了解了照亮宇宙迷雾的灯塔,"莱亚说。"它们是许许多多微小星系中能量惊人的恒星"。早期宇宙中的大多数星系预计都相对较小,因此研究它们的频率和特性极其困难。由于JWST的灵敏度与Abell2744星团的引力透镜效应(附近的星系就像宇宙放大镜,会扭曲空间并放大背景星系的光线)的独特结合,现在有可能确定宇宙最初十亿年期间小型星系的丰度及其电离特性。索邦大学天体物理学家、巴黎天体物理研究所研究员、论文第一作者哈基姆-阿泰克(HakimAtek)在一份新闻稿中说:"我们发现,在宇宙再电离的这一时期,小星系的数量比大质量星系多出约一百比一。这些新的观测结果还显示,这些小星系产生了大量的电离光子,比通常假设的遥远星系的标准值高出四倍。这意味着,这些星系发出的电离光子总通量远远超过了再电离所需的阈值"。绘制宇宙演化图:未来方向宾夕法尼亚州立大学的研究小组领导了UNCOVER勘测的建模工作,该勘测以大型前景星系团为目标,这些星系团对更微小、更遥远的星系产生了透镜效应。宾夕法尼亚州立大学的研究人员分析了巡天中的所有小光点,以了解天体的特性以及它们可能的质量和距离。Leja解释说,这一分析随后被用来指导后来JWST更详细的观测,从而推动了这一发现。在这些发现之前,有一些假说指出了宇宙再电离的其他来源,如超大质量黑洞、质量超过10亿太阳质量的大星系和质量小于10亿太阳质量的小星系。研究人员说,由于低质量星系的光度较低,证实与低质量星系有关的假说尤其困难,但新发现提供了迄今为止最明确的证据,证明低质量星系在宇宙再电离过程中发挥了核心作用。研究人员现在希望将这项研究扩展到更大的范围,以确认他们分析的特定位置能够代表宇宙中星系的平均分布情况。除了再电离过程之外,他们的观测还提供了对早期恒星形成过程、星系如何从原始气体中产生--以及它们如何演变成我们今天所知的宇宙的深入了解。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425740.htm手机版:https://m.cnbeta.com.tw/view/1425740.htm

封面图片

詹姆斯·韦伯太空望远镜揭示了宇宙中最古老的星团

詹姆斯·韦伯太空望远镜揭示了宇宙中最古老的星团这项工作是由一个加拿大天文学家团队进行的,包括来自多伦多大学文理学院邓拉普天文学和天体物理学研究所的专家。邓拉普天文学与天体物理学研究所的博士后研究员LamiyaMowla说:"JWST是为了寻找第一批恒星和第一批星系而建造的,并帮助我们了解宇宙中复杂性的起源,如化学元素和生命的构件,"他是这项研究的共同主要作者,这项研究是由加拿大NIRISS无偏群调查(CANUCS)小组进行的。"韦伯第一深场的这一发现已经提供了对恒星形成最早阶段的详细观察,证实了JWST令人难以置信的力量。"研究人员研究了位于韦伯第一深场的闪亮星系,并利用JWST确定它周围的五个闪亮物体是球状星团。图片来源:加拿大航天局,图片来自NASA、ESA、CSA、STScI;Mowla、Iyer等人,2022年在精细的韦伯第一深场图像中,天文学家们很快就锁定了他们称之为"火花星系"的的天体。这个星系位于90亿光年之外,它的名字来自于它周围出现的黄红色小点的紧凑物体,研究人员称之为"火花"。研究小组确定,这些火花可能是正在形成恒星的年轻星团--诞生于大爆炸后30亿年的恒星形成高峰期,也可能是古老的球状星团。球状星团是一个星系萌芽时期的古老恒星集合体,包含了关于其最早形成和成长阶段的线索。通过对其中12个紧凑物体的初步分析,研究小组确定其中5个不仅是球状星团,而且是已知的最古老的星团之一。"来自JWST的第一批图像发现遥远星系周围的古老球状星团是一个令人难以置信的时刻--这是以前的哈勃太空望远镜成像所无法做到的,"邓拉普天文学与天体物理学研究所的博士后研究员、该研究的共同主要作者KartheikG.Iyer说。"由于我们可以在一系列的波长范围内观察到这些'火花',我们可以对它们进行建模,并更好地了解它们的物理特性--比如它们的年龄有多大以及它们包含多少颗恒星。我们希望用JWST从如此遥远的距离观察球状星团的知识将刺激进一步的科学和搜索类似的物体。天文学家利用引力透镜来研究非常遥远和非常微弱的星系。资料来源:美国国家航空航天局,欧空局和L.Calçada银河系已知有大约150个球状星团,但是这些密集的星团究竟是如何形成的,以及何时形成的,人们并不十分清楚。天文学家们知道,球状星团的年龄可能非常大,但要测量它们的年龄却具有难以置信的挑战性。利用非常遥远的球状星团来确定遥远星系中第一批恒星的年龄,这在以前是没有的,只有在JWST上才有可能做到。直到现在,天文学家还不能用哈勃太空望远镜看到火花星系的周边紧凑物体。这种情况随着JWST分辨率和灵敏度的提高而改变,在韦伯的第一张深场图像中首次揭示了该星系周围的小点,它被放大了100倍,这是由于一种叫做引力透镜的效应--前景中的SMACS0723星系团扭曲了它背后的东西,很像一个巨大的放大镜。引力透镜产生了三个独立的"火花"图像,使天文学家能够更详细地研究这个星系。研究人员将JWST的近红外相机(NIRCam)的新数据与哈勃景象望远镜的档案数据相结合。NIRCam使用较长和较红的波长探测微弱的物体,以观察超过人眼甚至哈勃太空望远镜可见的东西。由于星系团的透镜作用,以及JWST的高分辨率,这两方面的放大作用使得观察紧凑物体成为可能。JWST上加拿大制造的近红外成像仪和无缝隙光谱仪(NIRISS)提供了独立的验证,即这些天体是古老的球状星团,因为研究人员没有观察到氧射线--这是正在积极形成恒星的年轻星团所发出的具有可测量光谱的发射物。NIRISS还帮助解开了"闪耀者"的三层光束图像的几何结构。JWST的加拿大制造的NIRISS仪器在帮助我们理解"闪耀者"及其球状星团的三个图像是如何连接的方面至关重要,"圣玛丽大学的教授MarcinSawicki说。他是加拿大天文学研究主席,也是这项研究的共同作者。 "看到对火花星系的几个球状星团进行了三次成像,使我们清楚地看到,它们是围绕着火花星系运行的,而不是简单地在它的前面偶然出现。"JWST将从2022年10月开始观测CANUCS场,利用其数据来检查五个大规模的星系团,研究人员期望在其周围发现更多这样的系统。未来的研究还将对星系团进行建模,以了解透镜效应,并执行更有力的分析来解释恒星形成的历史。...PC版:https://www.cnbeta.com.tw/articles/soft/1333883.htm手机版:https://m.cnbeta.com.tw/view/1333883.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人