生物芭蕾:科学家以前所未有的清晰度揭示分子"相干性"之舞

生物芭蕾:科学家以前所未有的清晰度揭示分子"相干性"之舞结合两种技术,研究人员揭示了"相干性"在分子反应中的关键作用,为分子动力学的先进控制铺平了道路。探测过程示意图。资料来源:SamuelPerrett由帝国理工大学生命科学系的贾斯珀-范-托尔(JaspervanThor)教授领导的大型国际研究小组最近在《自然-化学》(NatureChemistry)杂志上报告了他们的研究成果。晶体学是结构生物学中一项强大的技术,它可以拍摄分子排列方式的"快照"。经过数次大规模实验和多年的理论研究,新研究背后的团队将这项技术与另一项绘制分子电子和核构型振动图的技术(即光谱学)相结合。研究小组在世界各地的强大X射线激光设备上演示了这项新技术,结果表明,当他们研究的蛋白质中的分子受到光学激发时,它们的最初运动是"相干"的结果。这表明这是一种振动效应,而不是随后生物反应功能部分的运动。首次在实验中显示的这一重要区别,凸显了光谱物理学如何为结构生物学的经典晶体学方法带来新的启示。范托尔教授说:"维持生命的每一个过程都是由蛋白质完成的,但要了解这些复杂分子是如何完成它们的工作,就必须了解它们原子的排列,以及这种结构在反应过程中是如何变化的。利用光谱学的方法,我们现在可以通过解决其晶体结构,直接以图像的形式看到属于所谓相干过程的超快分子运动。我们现在拥有了以接近原子分辨率的极快时间尺度理解甚至控制分子动力学的工具。我们希望通过分享这一新技术的方法细节,能够鼓励时间分辨结构生物学以及超快激光光谱学领域的研究人员探索相干过程的晶体结构"。技术结合将这些技术结合起来需要使用X射线自由电子激光器(XFEL)设施,包括美国的Linac相干光源(LCLS)、日本的SPring-8Angstrom紧凑型自由电子激光器(SACLA)、韩国的PAL-XFEL以及最近在汉堡的欧洲XFEL。自2009年以来,该团队成员一直在XFEL工作,利用并了解飞秒(十亿分之一秒)时间尺度上反应蛋白质的运动,这被称为飞秒化学。在激光脉冲激发后,利用X射线对结构进行"快照"。2016年,这项技术取得了初步成功,详细描绘了光诱导生物蛋白质发生的变化。然而,研究人员仍需解决一个关键问题:在第一个激光光脉冲之后,飞秒时间尺度上的微小分子"运动"直接源自何处?以前的研究假设所有的运动都与生物反应相对应,即其功能运动。但使用新方法后,研究小组在实验中发现情况并非如此。相干控制为了得出这一结论,他们创造了"相干控制"--塑造激光,以可预测的方式控制蛋白质的运动。2018年在斯坦福的LCLS取得初步成功后,为了检查和验证这种方法,他们在世界各地的XFEL设施共进行了六次实验,每次都组建了大型团队,并形成了国际合作关系。然后,他们将这些实验数据与从飞沫化学修改而来的理论方法相结合,以便将其应用于X射线晶体学数据而非光谱数据。结论是,在皮米尺度和飞秒时间尺度上精确测量到的超快运动并不属于生物反应,而是属于剩余基态的振动一致性。这意味着飞秒激光脉冲过后"遗留"的分子会主导随后测量到的运动,但仅限于所谓的振动相干时间内。范索尔教授说:"我们的结论是,在我们的实验中,即使不包括相干控制,传统的时间分辨测量实际上也是由来自黑暗"反应物"基态的运动所主导,而这些运动与光引发的生物反应无关。相反,这些运动与传统的振动光谱法所测量的运动相对应,具有非常不同但同样重要的意义这实际上是根据以前的理论工作预测出来的,但现在却在实验中得到了证实。这将对时间分辨结构生物学以及超快光谱学领域产生重大影响,因为我们已经开发并提供了分析超快飞秒时间尺度运动的工具。"...PC版:https://www.cnbeta.com.tw/articles/soft/1384887.htm手机版:https://m.cnbeta.com.tw/view/1384887.htm

相关推荐

封面图片

科学家以前所未有的"实时"视角揭示大脑的复杂性

科学家以前所未有的"实时"视角揭示大脑的复杂性要掌握这种复杂程度的信息极具挑战性,因此我们必须采用先进的技术,在微观层面上解码大脑内部发生的微小而复杂的相互作用。因此,成像技术成为神经科学领域的关键工具。约翰-丹泽尔(JohannDanzl)在国际科学与技术协会(ISTA)的研究小组开发的新型成像和虚拟重建技术是大脑活动成像技术的一大飞跃,并被恰当地命名为LIONESS-即实时信息优化纳米镜成像技术(LiveInformationOptimizedNanoscopyEnablingSaturatedSegmentation)。LIONESS是一个用于成像、重建和分析活体脑组织的管道,其全面性和空间分辨率是迄今为止无法实现的。a:复杂的神经元环境b:LIONESS可以对样本进行成像和重建,从而阐明活体脑组织中的许多动态结构和功能。资料来源:JohannDanzl"有了LIONESS,我们第一次有可能对活脑组织进行全面、密集的重建。通过对组织进行多次成像,LIONESS让我们能够观察和测量大脑中的动态细胞生物学过程,"第一作者PhilippVelicky说。"输出结果是细胞排列的三维重建图像,时间是第四维,因为样本可以在几分钟、几小时或几天内成像。"LIONESS的优势在于精良的光学技术和构成其核心的两级深度学习(一种人工智能方法):第一级提高图像质量,第二级识别密集神经元环境中的不同细胞结构。该管道是丹泽尔小组、比克尔小组、乔纳斯小组、诺瓦里诺小组、ISTA科学服务单位以及其他国际合作者的合作成果。"ISTA的约翰-丹兹尔(JohannDanzl)说:"我们的方法是组建一个充满活力的科学家小组,他们拥有独特的跨学科综合专长,共同致力于填补脑组织分析领域的技术空白。重建活体脑组织的管道。通过优化的激光聚焦采集显微镜图像--图像处理(DL)--分割(DL)--三维视觉分析。图片来源:JohannDanzl跨越障碍以前可以通过电子显微镜重建脑组织。这种方法根据样本与电子的相互作用对样本进行成像。尽管电子显微镜能捕捉几纳米(百万分之一毫米)分辨率的图像,但它要求样本固定在一种生物状态,需要对样本进行物理切片才能获得三维信息。因此,无法获得动态信息。另一种以前已知的技术是光学显微镜,它可以通过"光学"而不是物理切片来观察活体系统和记录完整的组织体积。然而,由于光波产生图像的特性,光显微镜的分辨率受到严重影响。其最佳分辨率为几百纳米,过于粗糙,无法捕捉脑组织中重要的细胞细节。利用超分辨率光学显微镜,科学家们可以打破这一分辨率障碍。这一领域的最新研究成果被称为"超分辨率阴影成像"(SUSHI,Super-resolutionShadowImaging),它表明,在细胞周围的空间中涂抹染料分子,并应用获得诺贝尔奖的超分辨率技术STED(受激辐射损耗)显微镜,就能显示出所有细胞结构的超分辨率"阴影",从而将它们在组织中可视化。LIONESS可以对样本进行成像和重建,从而阐明活体脑组织中的许多动态结构和功能。资料来源:朱莉娅-柳奇克(JuliaLyudchikISTA)尽管如此,要想通过提高分辨率来对整个体积的脑组织进行成像,从而与脑组织复杂的三维结构相匹配,这一直是不可能的。这是因为在提高分辨率的同时,还需要对样本进行高负荷的成像光照,这可能会损坏或"损坏"微妙的活体组织。这就是LIONESS的优势所在,根据作者的说法,LIONESS是在"快速、温和"的成像条件下开发的,因此能保持样本的活力。该技术在提供各向同性超分辨率的同时--即在所有三个空间维度上都同样出色--还能以三维纳米级分辨率的细节观察组织的细胞成分。在成像步骤中,LIONESS从样本中收集的信息越少越好。随后进行第一个深度学习步骤,在称为"图像复原"的过程中填充有关脑组织结构的额外信息。通过这种创新方式,它可以实现约130纳米的分辨率,同时又足够温和,可以对活脑组织进行实时成像。这些步骤共同实现了深度学习的第二步,这一次是让极其复杂的成像数据变得有意义,并以自动化的方式识别神经元结构。ISTA科学家约翰-丹兹尔(JohannDanzl)在奥地利科技研究所的实验室中。图片来源:NadinePoncioniISTA定位Danzl说:"跨学科的方法使我们能够打破解析力和活体系统光照的相互交织限制,使复杂的三维数据变得有意义,并将组织的细胞结构与分子和功能测量结合起来。"在虚拟重建方面,Danzl和Velicky与视觉计算专家合作:ISTA的Bickel小组和哈佛大学HanspeterPfister领导的小组,他们在自动分割(自动识别组织中的细胞结构的过程)和可视化方面贡献了自己的专业知识,ISTA的图像分析科学家ChristophSommer也提供了进一步的支持。在复杂的标记策略方面,来自爱丁堡、柏林和国际科学与技术机构的神经科学家和化学家也做出了贡献。因此,在同一活体神经元回路中进行功能测量(即读出细胞结构和生物信号活动)成为可能。这项工作是通过与ISTA的Jonas小组合作,对进入细胞的钙离子通量进行成像并测量细胞电活动来完成的。小组提供了人脑有机体,这种有机体通常被昵称为迷你大脑,可以模拟人脑的发育过程。作者强调,所有这一切都得益于ISTA顶尖科学服务部门的专业支持。大脑的结构和活动是高度动态的;其结构随着大脑执行和学习新任务而不断演变。大脑的这一特性通常被称为"可塑性"。因此,观察大脑组织结构的变化对于揭开其可塑性背后的秘密至关重要。国际科学与技术协会开发的新工具通过揭示亚细胞结构并捕捉这些结构如何随时间发生变化,显示出了解脑组织以及其他潜在器官功能结构的潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1382361.htm手机版:https://m.cnbeta.com.tw/view/1382361.htm

封面图片

物理学家以前所未有的精确度测量原子核的波状振动

物理学家以前所未有的精确度测量原子核的波状振动研究人员在科学杂志《自然-物理》上发表的论文中断言,他们的测量结果是迄今为止对核材料波状运动最精确的确认。此外,他们没有发现任何证据表明原子核之间的作用力有任何偏差。近100年来,简单原子一直是精密实验和理论研究的对象,其中对氢原子--只有一个电子的最简单原子--的描述和测量工作堪称开创性。目前,氢原子能量及其电磁频谱是最精确计算的束缚量子系统能量。由于还可以对频谱进行极其精确的测量,因此将理论预测与测量结果进行比较可以检验预测所依据的理论。实验示意图:在离子阱(灰色)中,激光波(红色)被发送到HD+分子离子(黄色/红色点对)上,引起量子跃迁。这反过来又导致分子离子的振动状态发生变化。这一过程与光谱线的出现相对应。激光波长经过精确测量。图片来源:HHU/SorooshAlighanbari此类测试非常重要。全世界的研究人员都在寻找暗物质存在可能产生的新物理效应的证据--尽管至今未果。这些效应将导致测量与预测之间的差异。与氢原子相比,最简单的分子在很长一段时间内都不是精确测量的对象。然而,由哈佛大学实验物理学系主任斯蒂芬-席勒教授(StephanSchillerPh.D.)领导的研究小组却致力于这一课题的研究。在杜塞尔多夫,该研究小组开展了开创性的工作,开发出了世界上最精确的实验技术。最简单的分子是分子氢离子(MHI):氢分子缺少一个电子,由三个粒子组成。其中一种变体H2+由两个质子和一个电子组成,而HD+则由一个质子、一个氘核(一种较重的氢同位素)和一个电子组成。质子和氘核是带电的"重子",即受到所谓强力作用的粒子。MHI的示意图,这里是一个HD+分子:它由一个氢原子核(p)和一个氘核(d)组成,这两个原子核可以相互旋转和振动。此外,还有一个电子(e)。p和d的运动表现为光谱线的出现。资料来源:HHU/SorooshAlighanbari在分子内部,各成分可以有不同的行为方式:电子围绕原子核运动,而原子核则相互振动或旋转,粒子的行为就像波一样。量子理论详细描述了这些波的运动。不同的运动模式决定了分子的光谱,反映在不同的光谱线上。光谱的产生方式与原子光谱类似,但要复杂得多。目前物理学研究的艺术在于极其精确地测量光谱线的波长,并在量子理论的帮助下极其精确地计算这些波长。如果这两个结果相吻合,就证明了预测的准确性,而如果不吻合,则可能为"新物理学"埋下伏笔。多年来,哈佛大学的物理学家团队不断改进MHI的激光光谱学,开发出各种技术,将光谱的实验分辨率提高了多个数量级。他们的目标是:光谱测量越精确,理论预测就越能得到验证。这样就能发现任何可能的理论偏差,从而为理论的修改提供起点。席勒教授的团队将实验精度提高到了优于理论的水平。为了实现这一目标,杜塞尔多夫的物理学家们将大约100个中等数量的MHI限制在一个超高真空容器的离子阱中,利用激光冷却技术将离子冷却到1毫开尔文的温度。这样就可以非常精确地测量旋转和振动跃迁的分子光谱。继早先对波长为230μm和5.1μm的光谱线进行研究之后,作者现在又在《自然-物理学》上发表了对波长更短的1.1μm光谱线的测量结果。席勒教授说:"实验测定的过渡频率与理论预测一致。结合之前的结果,我们对带电重子的量子运动进行了最精确的检验:任何偏离既定量子定律的情况如果存在,其偏差必须小于千亿分之一。"这一结果也可以用另一种方式来解释:假设除了众所周知的库仑力(带电粒子之间的作用力)之外,质子和氘核之间还可能存在另一种基本力。主要作者SorooshAlighanbari博士说:"这种假设的力可能与暗物质现象有关。我们在测量过程中还没有发现这种力的任何证据,但我们将继续寻找"。...PC版:https://www.cnbeta.com.tw/articles/soft/1374487.htm手机版:https://m.cnbeta.com.tw/view/1374487.htm

封面图片

科学家以前所未有的速度发现30种新的天然化合物

科学家以前所未有的速度发现30种新的天然化合物然而,据伊利诺伊大学约翰和玛格丽特-维特化学教授道格-米切尔(MMG)称,与这些生物体通过利用它们所拥有的遗传途径能够生产的化合物数量相比,这一点微不足道。"这只是冰山一角,"米切尔说。"在我们今天所知道的已知分子与自然界有能力生产的分子之间存在着差距。至少是100比1。"核糖体产生和翻译后修饰的肽,或简称"RiPPs"是一种天然产品,已成为抗生素的一个流行来源。获取RiPPs的传统方法很费力,包括将每个基因插入模型生物体,如大肠杆菌,一次一个观察它产生什么化合物。然而,在最近的一项研究中,研究人员利用伊利诺伊州先进生物制造生物中心,能够以前所未有的速度和规模找到并描述新的RiPPs,这是卡尔-R-沃斯基因组生物学研究所的一项重要联合工作的成果。iBioFAB是一个实验室自动化系统,可以一次从数百个基因中分析和创建许多合成基因途径,这项任务通常需要众多研究人员和更多时间来完成。这项研究是米切尔的实验室、赵惠民(BSD/GSE负责人/CABBI/CGD/MMG)的实验室、StevenL.Miller化学和生物分子工程主席、WilfredvanderDonk(MMG)的实验室、RichardE.Heckert化学捐赠主席和HowardHughes医学研究所研究员之间的合作。在伊利诺伊大学厄巴纳·香槟分校大规模合作的一篇新论文中,研究人员能够以前所未有的速度和规模,利用伊利诺伊大学先进生物制造的生物基金会,发现并描述新的核糖体合成和翻译后修饰的肽(RiPPs)。资料来源:伊利诺伊大学厄巴纳-香槟分校卡尔-R-沃斯基因组生物学研究所三位共同第一作者,Mitchell实验室四年级博士生AlexBattiste、Zhao实验室五年级博士生ChengyouShi和vanderDonk实验室博士后RichardAyikpoe描述了他们如何在各自的实验室领导该项目的一部分。Shi的团队准备了合成基因,然后使用iBioFAB与一个名为RODEO的基因组挖掘程序集成,将它们组装成候选路径,或基因集群。然后,不同类别的基因簇被交给Battiste和Ayikpoe的团队,以测试哪些途径具有功能性并可能在大肠杆菌中产生新的RiPPs。任何显示出抗生素活性的RiPPs结构都由Ayikpoe的团队进行了详细描述。高通量技术允许一次性测试由大约400个基因组成的96条途径,产生了30种新化合物。"与传统的RiPP发现方法相比,我们的平台在许多方面都具有可扩展性和高通量性,从生物合成基因簇的识别、克隆、生产,以及检测和表征,"Shi说。"我想说,这是第一个用于大规模发现RiPP的平台。"在发现的新化合物中,有三个被发现具有抗菌特性。当对肺炎克雷伯氏菌(Klebsiellapneumoniae)进行测试时,发现新发现的抗菌性RiPPs能够有效地杀死这种危险的细菌。研究人员说,这可能是发现对目前抗生素药物有抗药性的细菌有效的化合物的一个新途径。"我们发现三种RiPPs对已知涉及医院获得性感染的病原体具有抗菌性,包括克雷伯氏菌,"Ayikpoe说。"这项研究表明,通过使用这个平台扩大我们可以一次性筛选的生物合成基因簇的数量,我们更有可能发现可能具有治疗作用的抗微生物化合物。"这篇论文的目标有两个:展示高通量技术快速构建和测试新的RiPPs的基因簇的能力,同时也强调在IGB内实现的那种大规模合作项目。了解更多:https://www.nature.com/articles/s41467-022-33890-w...PC版:https://www.cnbeta.com.tw/articles/soft/1333095.htm手机版:https://m.cnbeta.com.tw/view/1333095.htm

封面图片

科学家开发新的量子密钥分发系统 带来前所未有的传输速度

科学家开发新的量子密钥分发系统带来前所未有的传输速度研究人员开发了一种基于硅光子学的量子密钥分配(QKD)系统,可以以前所未有的速度传输安全密钥。QKD发射器(如图)将一个光子和电子集成电路与一个外部二极管激光器结合起来。资料来源:RebeckaSax,日内瓦大学与目前依靠计算复杂性来保证安全的通信协议不同,QKD的安全性是建立在物理学原理之上的。"研究小组成员、瑞士日内瓦大学的RebeckaSax说:"QKD技术的一个关键目标是能够简单地将其整合到现实世界的通信网络中。实现这一目标的一个重要和必要的步骤是使用集成光子学,它允许使用制造硅计算机芯片的同样的半导体技术来制造光学系统。"所示的基于二氧化硅的QKD接收器由一个光子集成电路和两个外部单光子探测器组成。在Optica出版集团的《光子学研究》杂志上,由日内瓦大学的HugoZbinden领导的研究人员描述了他们新的QKD系统,其中除了激光器和探测器之外所有的部件都集成在芯片上。这带来了许多优势,如紧凑性、低成本和易于大规模生产。"尽管QKD可以为银行、卫生和国防等敏感应用提供安全保障,但它还不是一项广泛的技术,"萨克斯说。"这项工作证明了技术的成熟性,并有助于解决围绕通过光学集成电路实现它的技术问题,这将允许在网络和其他应用中进行整合。"建立一个更快的基于芯片的系统在以前的工作中,研究人员开发了一个三态时空的QKD协议,用基于标准光纤的组件进行,以创纪录的高速度实现QKD传输。"我们在这项新工作中的目标是使用集成光子学实现同样的协议,"Sax说。"集成光子系统的紧凑性、稳健性和易操作性--在实施时需要验证的部件或在网络中需要排除的故障较少--提高了QKD作为安全通信技术的地位。"QKD系统使用一个发射器来发送编码的光子,一个接收器来检测它们。在这项新工作中,日内瓦大学的研究人员与德国柏林的硅光子学公司SicoyaGmbH和日内瓦的量子网络安全公司IDQuantique合作,开发了一种硅光子学发射器,它将光子集成电路与外部二极管激光器结合起来。QKD接收器由二氧化硅制成,由一个光子集成电路和两个外部单光子探测器组成。意大利米兰CNR光子学和纳米技术研究所的RobertoOsellame小组使用飞秒激光微加工来制造接收器。Sax说:"对于发射器,使用带有光子和电子集成电路的外部激光器使其有可能以高达2.5GHz的创纪录速度准确地产生和编码光子。对于接收器,一个低损耗和偏振无关的光子集成电路和一组外部检测器允许对传输的光子进行无源和简单的检测。用一根标准的单模光纤连接这两个部件,就能高速生产密匙。"低损耗、高速传输在彻底描述了集成发射器和接收器的特性后,研究人员用它来进行秘密密钥交换,使用不同的模拟光纤距离,并使用150公里长的单模光纤和单光子雪崩光电二极管,这些都非常适合于实际的实施。他们还使用单光子超导纳米线探测器进行了实验,这使得量子比特错误率低至0.8%。该接收器不仅具有偏振独立的特点,这在使用集成光子技术时很复杂,而且还呈现出极低的损耗,约为3dB。SAX说:"在秘密密钥率的产生和量子比特错误率方面,这些新的实验产生的结果与以前使用基于光纤的组件进行的实验相似。然而,QKD系统比以前的实验设置要简单和实用得多,从而显示了用集成电路使用这种协议的可行性。"研究人员现在正在努力将系统部件安置在一个简单的机架外壳中,这将使QKD在网络系统中得以实施。...PC版:https://www.cnbeta.com.tw/articles/soft/1362469.htm手机版:https://m.cnbeta.com.tw/view/1362469.htm

封面图片

科学家"拉伸"时间以改善分子振动信息检测

科学家"拉伸"时间以改善分子振动信息检测首先,样品被红外光照亮。在光与样品相互作用后,产生的波长从低能量的红外线"上转换"为高能量的近红外波长。然后,近红外脉冲通过一根光纤,在时间上基本上"拉长"了脉冲。一个近红外光电探测器检测到这些脉冲。左下角的插图显示了气态CH4分子在三个连续时间点的透射率光谱。但传统的红外光谱方法提供的是低(时间)分辨率数据。它们通常只适用于静态样品,因为光谱数据的获取是一个缓慢的过程。检测快速变化的现象需要多次快速测量,而东京大学的Ideguchi教授和他的团队现在有可能获得高速和高分辨率的光谱数据。该团队发现了上转换时间拉伸红外光谱仪(UC-TSIR),它能以每秒1000万张光谱的速度测量1000个光谱元素的红外光谱。分子中的原子像球体一样结合在一起,有坚硬的弹簧连接着它们。将红外光(2-20微米波长)照在物质上;它吸收了红外能量,"弹簧"就会振动。振动运动的范围取决于分子的结构。因此,我们可以通过检测物质吸收的波长范围--它的吸收光谱来识别和推断物质的特性。"随着最近使用机器学习和其他技术分析光谱能力的提高,红外光谱方法必须迅速获得大量的分子振动信息。我们想开发红外光谱方法来实现这一目标,"Ideguchi教授解释研究小组的动机时说。传统的时间拉伸红外光谱数据的可测量光谱元素较少(约30个),因为仪器在红外区域工作,而目前光学技术在该区域受到限制。"Hashimoto博士说:"UC-TSIR通过用波长转换技术(上转换)将含有分子振动信息的红外脉冲转换为近红外脉冲,并在近红外区域对脉冲进行时间拉伸和检测,从而打破了这个限制。与传统方法相比,UC-TSIR提供了超过30倍的光谱元素和400倍的光谱分辨率。UC-TSIR能够以高时间分辨率追踪高速现象,如气体分子的燃烧和生物分子的不可逆化学反应。"从理论上讲,这个概念听起来很简单,很容易实现,但事实远非如此。"我们仔细选择了光学元件,并通过试验和错误调整参数。甚至在建立了这个装置之后,我们还处理了由不需要的非线性光学效应和不充分的时间拉伸造成的各种光谱失真。在处理完这些问题后,我们终于看到了清晰的红外吸收光谱,这让我们欣喜若狂,通过UC-TSIR进行纳秒或微秒级的超快连续红外光谱测量可以解决传统光谱学方法无法解决的问题"。...PC版:https://www.cnbeta.com.tw/articles/soft/1347757.htm手机版:https://m.cnbeta.com.tw/view/1347757.htm

封面图片

X射线计算机视觉揭示前所未有的锂电池物理和化学细节

X射线计算机视觉揭示前所未有的锂电池物理和化学细节来自SLAC、斯坦福大学、麻省理工学院和丰田研究所的研究小组利用机器学习重新分析了电池循环过程中锂离子进出电池电极纳米粒子(左)的X射线图像。图像中的假色显示了每个粒子的电荷状态,并揭示了单个粒子内部的变化过程是多么不均匀。图片来源:Cube3D9月13日,来自美国能源部SLAC国家加速器实验室、斯坦福大学、麻省理工学院和丰田研究所的研究人员在《自然》杂志上报告说,这种新方法已经提出了一种方法,可以使一种锂离子电池电极中的数十亿纳米粒子更有效地储存和释放电荷。斯坦福大学副教授、SLAC院系科学家兼SLAC-斯坦福电池中心主任WilliamChueh说:"现在能制作出电池纳米粒子工作时的精美X射线影片,但这些影片信息量太大,要了解粒子如何发挥作用的微妙细节确实是个挑战,"他与麻省理工学院教授MartinBazant共同领导了这项研究。"Chueh说:"现在我们可以获得以前不可能获得的见解。我们的行业合作伙伴需要这种以科学为基础的基本信息,以便更快地开发出更好的电池。"研究人员说,从更广泛的意义上讲,这种发现图像中复杂图案背后的物理学原理的方法甚至可以为其他类型的化学和生物系统(如发育中胚胎的细胞分裂)提供前所未有的洞察力。透视电池泄露秘密研究小组所研究的电池微粒由磷酸铁锂或LFP制成。它们以数十亿计地装入许多锂离子电池的正极,每个正极都涂有一层薄薄的碳,以提高电极的导电性。为了观察电池工作时内部发生的情况,Chueh的团队制造了微型透明电池,其中两个电极被充满自由移动锂离子的电解质溶液包围。当电池放电时,锂离子流入正极的锂离子电池电极,并像拥挤的停车场中的汽车一样停在其纳米颗粒中,这种反应被称为插层。当电池充电时,锂离子会再次流出,到达相反的负极。来自SLAC、斯坦福大学、麻省理工学院和丰田研究所的研究小组利用机器学习技术,逐像素重新分析了像这样的X射线影片,发现了电池循环的新物理和化学细节。这段动画基于该团队在2016年制作的X射线图像。它展示了锂离子电池电极中数十亿个纳米粒子中的一些粒子在锂离子流入和流出时的充电(红到绿)和放电(绿到红)过程,并揭示了单个粒子内部的过程是多么不均匀。资料来源:SLAC国家加速器实验室丰田研究所能源与材料高级主管布莱恩-斯托里(BrianStorey)说:"磷酸铁锂是一种重要的电池材料,因为它成本低、安全性能好,而且使用丰富的元素。我们看到LFP在电动汽车市场的应用越来越广泛,因此这项研究的时机再好不过了。"合作历史和先前的工作Chueh和Bazant八年前开始合作进行电池研究。Bazant已经对锂离子进出LFP粒子时形成的图案进行了大量的数学建模。Chueh一直在使用劳伦斯伯克利国家实验室先进光源的先进X射线显微镜,拍摄电池颗粒工作时的纳米级电影,细节可小至十亿分之一米。2016年,他们的研究团队发表了突破性的纳米级影片,展示了锂离子如何进出单个LFP纳米粒子。随后,在丰田研究院的资助下,该团队开始使用麻省理工学院开发的机器学习工具,大大加快了电池测试和筛选众多可能的充电方法以找到最有效方法的过程。他们还将在数据中寻找模式的传统机器学习与从实验中获得的知识和物理学指导下的方程式相结合,发现并解释了缩短快速充电锂离子电池寿命的过程。逐像素分析在这项最新研究中,Chueh和Bazant使用了机器学习的一个子领域--计算机视觉,从他们在2016年拍摄的62张关于锂离子电池颗粒充电或放电的纳米级X射线影片中挖掘出了更多详细信息。这些影片中的每张静止图像都包含大约490个像素--这是可以从图像中获取的最小信息单位,无论是用X射线照射探测器还是用可见光照射智能手机摄像头拍摄的图像。这就为他们提供了大约180000个像素的信息。研究小组利用这18万个像素来训练他们的计算模型,以生成能准确描述锂插入反应如何进行的方程。他们发现,离子在LFP粒子内的运动与Bazant的计算机模拟预测非常吻合。Bazant说:"里面的每个小像素都在从满到空,从满到空地跳跃。我们正在绘制整个过程的地图,用我们的方程来理解这是如何发生的。""新技术揭示了一些以前无法看到的现象,包括单个LFP纳米粒子不同区域锂插入反应速率的变化。"巴赞特说,"有些区域的反应速度似乎很快,有些则很慢"。论文最重要的实际发现是,LFP粒子碳涂层厚度的变化直接控制着锂离子的进出速度,这可能会带来更高效的充电和放电。科学家们从这项研究中了解到,控制电池过程的是液态电解质和固态电极材料之间的界面--插层反应和颗粒碳涂层厚度的变化在这里以复杂的方式相互作用。这意味着,下一步的重点应该真正放在该界面的工程设计上。丰田研究所的Storey补充说:"这篇论文的发表是我们六年努力与合作的结晶。这项技术让我们以一种前所未有的方式揭开了电池的内部构造。我们的下一个目标是通过应用这一新的认识来改进电池设计。"...PC版:https://www.cnbeta.com.tw/articles/soft/1385821.htm手机版:https://m.cnbeta.com.tw/view/1385821.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人