太阳能加热纳米线用于表面除冰 效率几乎达到100%

太阳能加热纳米线用于表面除冰效率几乎达到100%多年来,人们一直在开发和测试各种除冰系统。有的需要化学涂层,有的则需要纳米级结构来阻止水和冰的附着。有的利用电能加热注入石墨烯或碳纳米管的表面,有的则由磁性涂层制成,可以直接将冰滑落。在这项新研究中,大连团队设计了纳米铜线组件,无需人工能源供应,就能起到温暖表面的作用。相反,它们从太阳光中获取能量,并能有效地吸收热量,并将热量平稳地分布到整个阵列中。通过一系列实验,研究小组确定了最有效的设计--直立的纳米线之间只有2或3微米的间隙。这使它们能够捕捉到照射到它们的95%以上的阳光,而铜的高导热性使阳光能够有效地传播出去。最终,这种超疏水表面的解冻效率接近100%。新型纳米铜线除冰结构的工作原理示意图研究小组表示,这种技术似乎很有前景,但也承认在扩大生产规模方面可能存在一些问题,需要首先克服。这项研究的通讯作者马学虎说:"从原理上讲,纳米线组件的设计融合了易于制造、高度可控性和形态多样性等特点,在广泛的除冰和解冻应用中大有可为,因为这些应用不需要传统的能源输入。然而,在涉及复杂工作条件的实际应用中,纳米线组件的耐用性、可扩展性和化学稳定性受到限制。有必要开发更通用的微米/纳米材料加工方法,以提高制造效率、材料规模和表面耐久性。尽管如此,这项工作的设计理念仍是未来研究工作的指南针,尤其是在面临电力短缺的寒冷地区。"这项研究发表在《国际极限制造期刊》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1380259.htm手机版:https://m.cnbeta.com.tw/view/1380259.htm

相关推荐

封面图片

超导纳米线:用于蛋白质离子检测的量子技术大突破

超导纳米线:用于蛋白质离子检测的量子技术大突破用超导纳米线计算单个蛋白质。背景和纳米线是在Photoshop中使用生成填充AI更改的。(人类胰岛素PDB:3I40)与传统探测器相比,超导纳米线探测器还能通过撞击能量区分大分子。这样就能更灵敏地检测蛋白质,并在质谱分析中提供更多信息。这项研究的结果最近发表在《科学进展》(ScienceAdvances)杂志上。质谱技术的进步在生命科学的许多领域,包括蛋白质研究、诊断和分析领域,对大分子的检测、识别和分析都非常有趣。质谱法通常用作一种检测系统--这种方法通常根据带电粒子(离子)的质量电荷比将其分离,并测量检测器产生的信号强度。这就提供了不同类型离子的相对丰度信息,因此也就提供了样品的组成信息。然而,传统的探测器只能对具有高冲击能量的粒子实现较高的探测效率和空间分辨率--一个国际研究小组利用超导纳米线探测器克服了这一限制。超导技术的创新应用在目前的研究中,由维也纳大学协调,与代尔夫特(SingleQuantum)、洛桑(EPFL)、阿尔梅勒(MSVision)和巴塞尔大学的合作伙伴组成的欧洲联合研究小组首次展示了在所谓的四极杆质谱法中使用超导纳米线作为蛋白质束的优秀探测器。来自待分析样品的离子被送入四极杆质谱仪进行过滤。维也纳大学物理系量子纳米物理学组的项目负责人马库斯-阿恩特(MarkusArndt)解释说:"如果我们现在使用超导纳米线代替传统的探测器,我们甚至可以识别以低动能撞击探测器的粒子。这得益于纳米线探测器的特殊材料特性(超导性)。"维也纳大学SuperMaMa实验室外景。悬挂的镀金插件是辐射防护罩,超导纳米线探测器就安装在它后面:维也纳大学量子纳米物理学实验室这种探测方法的关键在于纳米线在极低的温度下进入超导状态,在这种状态下,纳米线失去电阻,允许无损电流流动。进入的离子激发超导纳米线,使其恢复到正常导电状态(量子转换)。在这一转变过程中,纳米线电特性的变化被解释为探测信号。第一作者马塞尔-施特劳斯(MarcelStrauß)说:"通过我们使用的纳米线探测器,我们利用了从超导态到正常导电态的量子转变,因此可以比传统的离子探测器性能高出三个数量级"。事实上,纳米线探测器在极低的撞击能量下就能产生显著的量子产率,重新定义了传统探测器的可能性。"此外,采用这种量子传感器的质谱仪不仅可以根据分子的质量和电荷状态区分分子,还可以根据分子的动能对其进行分类。"马塞尔-施特劳斯(MarcelStrauß)说:"这就提高了检测能力,并为获得更好的空间分辨率提供了可能。"纳米线探测器可以在质谱分析、分子光谱分析、分子偏转测量或分子量子干涉测量等需要高效率和高分辨率的领域找到新的应用,尤其是在低冲击能量条件下。合作与资助单量子公司(SingleQuantum)领导超导纳米线探测器的研究,洛桑联邦理工学院(EPFL-Lausanne)的专家提供超冷电子器件,MSVISION公司是质谱分析领域的专家,巴塞尔大学的专家负责化学合成和蛋白质功能化。维也纳大学凭借其在量子光学、分子束和超导方面的专业知识,将所有组件整合在一起。这项工作由欧盟委员会资助,是SuperMaMa项目(860713)的一部分,该项目致力于研究用于质谱分析和分子分析的超导探测器。戈登和贝蒂-摩尔基金会(Gordon&BettyMooreFoundation)(10771)为分析修饰蛋白质提供了资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404053.htm手机版:https://m.cnbeta.com.tw/view/1404053.htm

封面图片

研究:碳纳米管提高了“纳米仿生”细菌太阳能电池的效率

研究:碳纳米管提高了“纳米仿生”细菌太阳能电池的效率瑞士洛桑联邦理工学院(EPFL)的工程师们发现了一种将碳纳米管插入光合细菌的方法,这大大提高了它们的电输出。它们甚至在分裂时将这些纳米管传给它们的后代,该团队称之为“遗传纳米仿生学”。PC版:https://www.cnbeta.com/articles/soft/1317903.htm手机版:https://m.cnbeta.com/view/1317903.htm

封面图片

新型纳米带可提高电池和太阳能电池的效率

新型纳米带可提高电池和太阳能电池的效率研究人员通过将磷与砷进行合金化,创造出了一系列新型纳米材料图/Zhang等人/伦敦大学学院(CC-BY4.0)该研究的通讯作者之一亚当-克兰西(AdamClancy)说:"我们在将磷纳米带与砷合金化方面的最新工作开辟了更多可能性--特别是改善电池和超级电容器的能量存储,以及增强医学中使用的近红外探测器。"研究人员所说的纳米带是指一原子厚的磷带,或者更准确地说,phosphorene,一种由单层人工制造的层状黑磷(磷的最稳定形式)组成的二维材料。2019年,UCL的研究人员发现了磷纳米带的潜力,他们发现在过氧化物太阳能电池中加入一层磷纳米带,可以让电池从太阳中获取更多能量。在目前的研究中,为了提高磷的导电性,他们引入了"微量"砷。将磷和砷薄片形成的晶体与溶解在-58°F(-50°C)液氨中的锂混合。24小时后除去氨水,换上有机溶剂。由于薄片的原子结构,锂离子只能沿一个方向移动,而不能横向移动,从而导致裂纹,形成带状。研究人员创造了一个新的纳米材料家族:砷磷合金纳米带(AsPNRs)。他们发现,砷磷合金纳米带在130K(-226°F/-140°C)以上具有高度导电性,同时保留了纯磷纳米带的有用特性。AsPNRs的一个关键特性是其极高的"空穴迁移率"。空穴是电子在电子传输过程中的反向伙伴,因此提高空穴的迁移率(衡量空穴在材料中移动速度的指标)有助于提高电流传输的效率。目前,磷纳米带要用作锂离子或钠离子电池的阳极材料,需要与碳等导电材料混合。研究人员说,由于AsPNRs能提高电池的能量存储量和充放电速度,因此可以省去碳填料。此外,他们还表示,在太阳能电池中使用AsPNRs将改善电荷在设备中的流动,从而提高电池的效率。克兰西说:"砷磷带还具有磁性,我们认为磁性来自沿边缘的原子,这使它们也有可能用于量子计算机。更广泛地说,这项研究表明,合金化是控制这一不断发展的纳米材料家族的特性,进而控制其应用和潜力的有力工具。"研究人员说,他们的AsPNRs可以在液体中大规模生产,然后可以用这种液体以低成本大量应用于不同的应用领域。这项研究发表在《美国化学学会杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1385697.htm手机版:https://m.cnbeta.com.tw/view/1385697.htm

封面图片

纳米线创新:科学家以更高的耐用性革新燃料电池

纳米线创新:科学家以更高的耐用性革新燃料电池电极中垂直排列的同轴纳米线,质子在纳米线内部的离子芯中传输。铂纳米薄膜外壳中传输的电子与氧气结合,完成燃料电池阴极反应。来源:LANL与其他设计相比,这种创新电极由不易腐蚀的纳米线组成,是聚合物电解质膜燃料电池的核心,它可以让燃料电池使用氢气作为汽车的无排放动力。洛斯阿拉莫斯国家实验室团队的科学家雅各布-斯本德洛(JacobSpendelow)在《先进材料》(AdvancedMaterials)杂志上介绍了他们的研究成果。"这项工作表明,我们可以摆脱传统的碳基催化剂载体,消除与碳腐蚀相关的降解问题,同时还能实现较高的燃料电池性能"。耐久性的增强使这种燃料电池有望应用于重型卡车,在这种应用中,燃料电池的寿命必须超过25000小时。同轴纳米线电极(CANE)由垂直排列的纳米线阵列组成,其中每根纳米线都由催化活性铂膜构成,铂膜围绕着离子传导聚合物芯。通过避免使用碳基催化剂支架,CANE消除了与碳腐蚀相关的常见降解机制。为了评估新型燃料电池的耐用性,洛斯阿拉莫斯国家实验室的团队进行了加速应力测试。值得注意的是,在针对支持材料进行了5000次应力测试循环后,CANE的性能损失仅为2%。相比之下,传统的碳基电极性能则下降了惊人的87%。同轴纳米线方法是洛斯阿拉莫斯国家实验室开发的几种新型燃料电池设计之一。...PC版:https://www.cnbeta.com.tw/articles/soft/1380263.htm手机版:https://m.cnbeta.com.tw/view/1380263.htm

封面图片

大肠杆菌变成了人造鼻的纳米线工厂

大肠杆菌变成了人造鼻的纳米线工厂当涉及到通过我们的鼻子感知我们周围的世界时,人类远远落后于我们的犬类伙伴。不过,为了努力追赶,科学家们多年来一直在努力工作,创造了一系列令人眼花缭乱的人工气味传感器。我们已经看到人造的"鼻子"可以从血液或尿液样本中发现癌症,从皮肤气味中检测出帕金森病,监测水中的细菌,找到自然灾害中埋在废墟下的人,并嗅出空气中的危险毒素。马萨诸塞大学阿默斯特分校(UMA)的研究人员说,这些传感器中使用的许多纳米线的问题是,它们是由有毒和不可降解的材料制成的,如硅或碳纤维。为了解决这个问题,研究小组转向了细菌解决方案。去年,UMA的微生物学家DerekLovley和电气与计算机工程师JunYao使用一种名为Geobactersulfurreducens的细菌创造了一种可穿戴的生物膜,该生物膜可通过汗水发电。该实验的成功集中体现在该细菌生长出能够实际导电的极小电线的能力。研究小组决定将这些纳米线用于他们新的人造鼻中。然而,巯基细菌很难培养,因为它需要非常特殊的条件才能生长。因此,该团队争取到了一种更坚韧的细菌的帮助。研究人员把'纳米线基因'--称为pilin--从G.sulfurreducens中取出,并把它拼接到大肠杆菌的DNA中,这是世界上最常见的细菌之一。除了让大肠杆菌开始生产纳米线外,Lovely和Yao还进行了额外的基因修改,使这些线被一种被称为DLESFL的肽所覆盖。这使得这些电线对氨的敏感度比以前高100倍,氨是肾脏疾病患者呼吸中的一种副产品。然后,这些生物导线被植入一个传感器,该传感器在发现氨方面比以前由传统材料制成的传感器更有效。Yao介绍说:"这项研究最令人兴奋的事情之一是,我们正在将电气工程带入一个根本性的新方向。这些蛋白质纳米线的魅力在于,可以利用生命的基因设计来建立一个稳定的、多功能的、低影响的和具有成本效益的平台,而不是用不会生物降解的稀缺原材料制成的电线。"研究人员说,可以让这些微小的细菌工厂生产出涂有不同肽的电线,可以为其他疾病的化学制造者提供感应。"有可能设计出独特的肽,每个肽都能特异性地结合感兴趣的分子,"研究报告的共同作者ToshiyukiUeki说。"因此,随着更多由身体发出的、对某种特定疾病具有特异性的示踪分子被确定,我们可以制造出结合了数百种不同化学嗅觉的纳米线的传感器来监测各种健康状况。"这项研究已经发表在《生物传感器和生物电子学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1346099.htm手机版:https://m.cnbeta.com.tw/view/1346099.htm

封面图片

新型太阳能技术可将温室气体转化为燃料和有用化学品

新型太阳能技术可将温室气体转化为燃料和有用化学品访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器在太阳光的集中照射下,这种复合材料在甲烷与二氧化碳的干转化(DRM)过程中表现出卓越的性能,合成气进化率达到180.9mmolgcat-1h-1,选择性达到96.3%。与传统催化系统相比,这是一项重大改进,因为传统催化系统通常需要高能量输入,而且会迅速失活。"我们的工作代表着在应对温室气体排放和可持续能源生产双重挑战方面迈出的重要一步,"上海交通大学首席研究员周宝文教授说。"通过利用太阳能和合理设计的纳米结构,我们展示了一条将废气转化为宝贵化学资源的绿色高效路线。"研究人员探索了Rh/InGaN1-xOx纳米线在光照驱动下与二氧化碳进行甲烷干转化制合成气(CH4+CO2+light=2CO+2H2)的应用。该研究提出,用O部分取代InGaN中的N可以大大提高催化剂在光照下的活性和稳定性,而无需额外加热。研究人员将其光催化剂的卓越性能归功于光活性InGaN纳米线、氧修饰表面和催化活性铑纳米颗粒的整合所产生的协同效应。机理研究表明,结合的氧原子在促进二氧化碳活化、促进一氧化碳生成和抑制催化剂因焦化沉积而失活方面起着至关重要的作用。这项研究成果发表在著名的《科学通报》杂志上,为开发先进的光催化系统,利用可再生资源可持续地生产燃料和化学品铺平了道路。研究小组相信,他们的方法可以推广到其他重要的化学反应中,为绿色化工提供新的机遇。周宝文教授说:"我们对这项技术的前景感到兴奋。"通过进一步优化催化剂设计和反应器配置,我们的目标是扩大该工艺的规模,并证明其在实际应用中的可行性。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431408.htm手机版:https://m.cnbeta.com.tw/view/1431408.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人