VERA望远镜网络揭示快速增长的黑洞周围环境

VERA望远镜网络揭示快速增长的黑洞周围环境从快速增长的超大质量黑洞喷射出的射流与周围的流出物。从黑洞附近发射的射电波的偏振面在穿过周围磁化气体时发生旋转图片来源:NAOJ现在人们普遍认为,几乎每个活动星系的核心都蕴藏着一个超大质量黑洞,其质量从数百万到数十亿倍于太阳。然而,这些黑洞获得如此巨大质量的成长史仍然是一个未解之谜。在东京大学研究生高村美惠子(MiekoTakamura)的带领下,一个国际研究小组重点研究了一类独特的活动星系,即窄线赛弗1(NLS1)星系。这些星系被怀疑含有相对较小但迅速增长的大质量黑洞,因此为研究这些宇宙怪兽的早期演化阶段提供了潜在的机会。为了更深入地了解这些奇特黑洞的周围环境,研究小组利用VERA观测了附近六个活跃的NLS1星系的核心,VERA是一个射电望远镜网络,其视力比人眼强10万倍以上。特别是,研究小组利用VERA最新增强的超宽带记录能力,以前所未有的精度探测到了从这些星系核心发出的微弱"偏振"无线电波。众所周知,在超大质量黑洞附近发射的无线电波有一部分会出现偏振。当这种偏振发射在黑洞周围的磁化气体中传播时,偏振面会逐渐旋转,造成一种被称为法拉第旋转的效应。这种旋转的程度(在给定波长下)与传播介质中的气体密度和磁场强度成正比。因此,偏振和法拉第旋转为了解中心黑洞周围的环境提供了宝贵的信息。新数据揭示了有史以来最清晰的这些星系核心的法拉第旋转情况,与对更老、更大质量、更发达的黑洞的测量结果相比,法拉第旋转明显更大。这表明这些星系的核区存在大量气体,促进了中心黑洞的快速增长。高村说:"超大质量黑洞的成长过程与人类类似。我们观测到的黑洞具有类似于美食爱好者的特征,类似于对香甜的米饭有着强烈渴望的少男少女。"这些结果以Takamura等人"用VERA宽带偏振测量法探测活跃的窄线塞弗特1星系的心脏"为题发表在《天体物理学报》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1372831.htm手机版:https://m.cnbeta.com.tw/view/1372831.htm

相关推荐

封面图片

钱德拉望远镜观测发现类星体对其周围环境影响不及预期

钱德拉望远镜观测发现类星体对其周围环境影响不及预期这些图像的中心是类星体H1821+643,这是一个快速增长的超大质量黑洞,天文学家们发现,尽管它产生了强烈的辐射,并在甚大阵列的射电数据中看到了粒子喷流,但它的表现并不尽如人意。资料来源:X射线:NASA/CXC/Univ.ofNottingham/H.Russelletal:NSF/NRAO/VLA;图像处理:NASA/CXC/SAO/N.Wolk这颗类星体被称为H1821+643,距离地球约34亿光年。类星体是一类罕见而极端的超大质量黑洞,它们疯狂地向内拉扯物质,产生强烈的辐射,有时还会产生强大的喷流。H1821+643是星系团中距离地球最近的类星体。类星体对周围环境的影响类星体与星系团中心的其他超大质量黑洞不同,它们能以更高的速度吸入更多的物质。天文学家发现,以中等速度生长的非类星体黑洞通过阻止银河系间炽热气体过度冷却来影响周围环境。这就调节了黑洞周围恒星的生长。然而,类星体的影响却不那么为人所知。这项关于H1821+643的新研究表明,类星体尽管如此活跃,但在推动其宿主星系和星团命运方面的作用可能没有一些科学家想象的那么重要。详细研究揭示惊人发现为了得出这一结论,研究小组利用钱德拉望远镜对H1821+643及其宿主星系所笼罩的高温气体进行了研究。然而,来自类星体的明亮X射线使得研究来自高温气体的较弱X射线变得十分困难。研究人员小心翼翼地移除了X射线眩光,以揭示黑洞的影响,这反映在新的合成图像中,显示了类星体周围星团中高温气体发出的X射线。这让他们看到类星体实际上对其周围环境几乎没有影响。研究小组利用钱德拉望远镜发现,银河系中心黑洞附近的气体密度比距离黑洞较远的区域要高得多,气体温度也低得多。科学家们预计,当几乎没有能量输入(通常来自黑洞的爆发)来阻止高温气体冷却并流向星系团中心时,高温气体就会有这样的表现。描述这些结果的论文已被《皇家天文学会月刊》接受,并可在线查阅。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425711.htm手机版:https://m.cnbeta.com.tw/view/1425711.htm

封面图片

韦伯望远镜发现迄今最古老黑洞

韦伯望远镜发现迄今最古老黑洞许多星系的中心都有一个超大质量黑洞,但科学家们目前尚不清楚这些黑洞是如何变得如此之大的。一种可能性是,它们由早期恒星坍缩产生的小黑洞形成,随着时间的推移,这些小黑洞结合在一起,形成一个超大质量黑洞。另一种说法是,它们是早期宇宙中大量气体直接塌缩而形成。在最新研究中,美国得克萨斯大学奥斯汀分校的丽贝卡·拉森及其同事们确定了迄今为止最早的黑洞,根据其与地球的距离,她们认为这个黑洞诞生于宇宙大爆炸后5.7亿年。此外,研究表明,这个黑洞的质量是太阳的1000万倍。拉森指出,这是早期宇宙中黑洞形成和生长的一个非常重要的未知领域,最新研究将有助科学家们揭示此类黑洞的形成原因。为识别出这个黑洞,拉森团队利用韦伯望远镜观察了一个星系,哈勃望远镜此前曾将该星系确定为宇宙早期已知最明亮的星系,但哈勃望远镜一直无法分辨出星系里面是什么。使用两台相机和两台分光镜,韦伯望远镜可分辨出星系发出的光信号的不同成分,并据此发现了这个黑洞。英国谢菲尔德大学的詹姆斯·穆兰尼说,这个黑洞的质量似乎表明,它不是由恒星质量的黑洞发展而来。相关研究已经提交论文预印本网站。...PC版:https://www.cnbeta.com.tw/articles/soft/1352643.htm手机版:https://m.cnbeta.com.tw/view/1352643.htm

封面图片

幼年即巨人 韦伯望远镜揭示超大质量黑洞的成长过程

幼年即巨人韦伯望远镜揭示超大质量黑洞的成长过程詹姆斯-韦伯太空望远镜(JWST)在服役的第一年里,在我们夜空的一个极小区域里发现了一堆小红点,这可能是一个意想不到的突破。通过老式哈勃太空望远镜的"眼睛",这些天体与普通星系无法区分。"JWST并不是为这一特定目的而开发的,但它帮助我们确定了在宇宙遥远的过去发现的微弱的小红点是质量极大的黑洞的小型版本。这些特殊的天体可能会改变我们对黑洞起源的看法,"该研究的第一作者、奥地利科学技术研究所(ISTA)助理教授乔瑞特-马特希(JorrytMatthee)说。"目前的发现可能会让我们离解答天文学中最大的难题之一更近一步:根据目前的模型,早期宇宙中的一些超大质量黑洞只是生长得'太快'了。那么它们是如何形成的呢?"巨型类星体和小红点。NASA/ESA/CSA詹姆斯-韦伯太空望远镜(JWST)NIRCam拍摄的发光类星体J1148+5251的照片,这是一个极其罕见的100亿太阳质量的活跃超大质量黑洞。类星体的光是橙色的星状光源,有六个清晰的衍射尖峰,是在130亿年前发出的。年轻宇宙中存在如此巨大的黑洞,对黑洞和星系形成理论提出了重要挑战。与此同时,图像还捕捉到了小的点状红色物体,即所谓的小红点。几乎每一张JWST的深空图像中都会出现几个这样的天体。与类星体J1148+5251一样,这些天体发出的光(在这些情况下是125亿年前发出的)也是由超大质量黑洞驱动的。不过,这些黑洞的质量要低一百到一千倍,而且被尘埃严重遮挡(使其呈现红色)。这些小红点可能代表了处于类星体发光阶段之前的演化阶段的星系,因此有助于研究人员了解超大质量黑洞在遥远星系中的形成和作用。该图像是EIGER项目的一部分。资料来源:NASA、ESA、CSA、J.Matthee(ISTA)、R.Mackenzie(苏黎世联邦理工学院)、D.Kashino(日本国家天文台)、S.Lilly(苏黎世联邦理工学院)宇宙的不归点长期以来,科学家们一直认为黑洞是一种数学奇观,直到它们的存在变得越来越明显。这些奇特的宇宙无底洞可能具有如此紧凑的质量和强大的引力,以至于任何东西都无法逃脱它们的吸引力--它们吸进任何东西,包括宇宙尘埃、行星和恒星,并使其周围的空间和时间发生变形,以至于连光都无法逃脱。爱因斯坦一个多世纪前发表的广义相对论预言,黑洞可以有任何质量。其中一些最引人入胜的黑洞是超大质量黑洞(SMBHs),它们的质量可以达到太阳质量的数百万到数十亿倍。天体物理学家一致认为,几乎每个大星系的中心都有一个超大质量黑洞。人马座A*是银河系中心的一个SMBH,其质量是太阳的400多万倍,这一证据获得了2020年诺贝尔物理学奖。质量太大,不可能存在然而,并非所有的SMBH都是一样的。人马座A*可以比作一座沉睡的火山,而有些SMBH则通过吞噬天文数字级的物质而极速增长。因此,它们变得非常明亮,直到不断膨胀的宇宙边缘都能观测到它们。这些SMBH被称为类星体,是宇宙中最亮的天体之一。"类星体的一个问题是它们中的一些似乎质量过大,从观测类星体的宇宙年龄来看质量太大。我们称它们为'问题类星体',"Matthee说。"如果我们考虑到类星体起源于大质量恒星的爆炸--而且我们从一般物理定律中知道了它们的最大增长速度,那么其中一些类星体的增长速度看起来超过了可能的范围。这就好比一个五岁的孩子长到了两米高。"他解释说。SMBH的生长速度可能比我们最初想象的还要快吗?或者它们的形成方式不同?JorrytMatthee,奥地利科技研究所(ISTA)助理教授巨型宇宙怪兽的小型版本现在,Matthee和他的同事们确定了在JWST图像中以小红点形式出现的天体群。同时,他们还证明这些天体是SMBH,但不是质量过大的SMBH。确定这些天体是SMBH的关键在于探测到了具有宽线剖面的Hα光谱发射线。Hα线是可见光深红色区域的光谱线,是氢原子受热时发出的。光谱的宽度可追踪气体的运动。"Hα线的基底越宽,气体的速度就越高。因此,这些光谱告诉我们,我们看到的是一个非常小的气体云,它的运动速度非常快,并围绕着像SMBH这样质量非常大的东西运行,"Matthee说。然而,这些小红点并不是在超大质量SMBH中发现的巨大宇宙怪兽。"'问题类星体'是蓝色的,非常明亮,质量是太阳的数十亿倍,而小红点更像是'类星体宝宝'。它们的质量介于一千万到一亿个太阳质量之间。此外,它们呈现红色是因为它们布满了尘埃。灰尘遮住了黑洞,使颜色变红,"Matthee说。但最终,从黑洞中流出的气体将刺破尘茧,巨行星将从这些小红点中演化出来。因此,这位ISTA天体物理学家和他的团队认为,这些小红点是巨型蓝色SMBH的红色小版本,处于问题类星体出现之前的阶段。"更详细地研究超大质量SMBH的婴儿版,将让我们更好地了解问题类星体是如何存在的。"一项"突破性"技术Matthee和他的团队之所以能找到婴儿类星体,要归功于EIGER(再电离纪元中的发射线星系和星系间气体)和FRESCO(第一再电离纪元光谱完整观测)合作项目获得的数据集。这些都是Matthee参与的一个大型和一个中型JWST计划。去年12月,《物理世界》杂志将EIGER列为2023年年度十大突破之一。"EIGER旨在专门研究罕见的蓝色超大质量类星体及其环境。它并不是为了寻找小红点而设计的。但我们在同一个数据集中偶然发现了它们。这是因为,通过使用JWST的近红外相机,EIGER获取了宇宙中所有天体的发射光谱,"Matthee说。"如果你竖起食指并完全伸直手臂,我们探索的夜空区域大约相当于你指甲表面的二十分之一。到目前为止,我们可能只触及了表面。"Matthee相信,目前的研究将开辟许多途径,并有助于回答一些有关宇宙的重大问题。"黑洞和SMBH可能是宇宙中最有趣的东西。很难解释它们为什么存在,但它们确实存在。我们希望这项工作能帮助我们揭开宇宙最大的神秘面纱之一。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423721.htm手机版:https://m.cnbeta.com.tw/view/1423721.htm

封面图片

欧空局XMM-牛顿号天文望远镜探测到黑洞风阻碍了恒星的形成

欧空局XMM-牛顿号天文望远镜探测到黑洞风阻碍了恒星的形成这幅艺术家的作品展示了从马卡里安817星系中心喷出的超高速风。这些风以每小时数百万公里的速度从广阔的太空区域中清除星际气体。没有了这些气体,星系就无法形成新的恒星,星系中心的黑洞也就没有什么可吃的了。图片来源:欧空局每个大星系的中心都有一个超大质量黑洞,它巨大的引力从周围吸入气体。当气体向内盘旋时,会在黑洞周围形成一个扁平的"吸积盘",并在那里发热和发光。随着时间的推移,最靠近黑洞的气体越过了不归点,被吞噬殆尽。然而,黑洞只会吞噬一部分向其旋转的气体。在环绕黑洞的过程中,一些物质会被甩回太空,就像一个蹒跚学步的孩子会把盘子里的东西打翻一样。在更戏剧性的情况下,黑洞会把整个餐桌掀翻:吸积盘中的气体以极快的速度向四面八方飞散,以至于周围的星际气体都被清空了。这不仅剥夺了黑洞的食物,还意味着在大片区域内无法形成新的恒星,从而改变了星系的结构。耀眼的蓝色恒星环绕着这个螺旋星系明亮、活跃的核心。它被称为马卡里安817,位于4.3亿光年外的天龙座北部。在远离中心的地方,这个星系显示出强烈的恒星形成区,以及沿着旋臂的星际尘埃暗带。银河系中心的怪兽黑洞的质量是太阳的4000万倍。它被一个巨大的物质圆盘包围着,超大质量黑洞正以每小时数百万公里的速度向太空喷射物质。这可以从银河系中心闪耀的明亮白光中看到。这张NASA/ESA哈勃太空望远镜图片是2009年8月2日用广角相机3拍摄的。图片来源:NASA、ESA和哈勃SM4ERO小组前所未有的观察在此之前,这种超快的"黑洞风"只在极其明亮的吸积盘中被探测到,因为吸积盘吸积物质的能力已经达到极限。这一次,XMM-牛顿在一个非常普通的星系中探测到了超快的风,可以说它"只是在吃零食"。"如果把风扇开到最大,你可能会预料到风速会非常快。在我们研究的这个名为马尔卡里安817的星系中,风扇的功率设置较低,但仍然产生了能量惊人的风。"本科生研究员米兰达-扎克(密歇根大学)指出,她在这项研究中发挥了核心作用。"观测到超高速风是非常罕见的,而探测到具有足够能量来改变其宿主星系特征的风就更少见了。马尔卡里安817在并不特别活跃的情况下,产生这些风的时间长达一年左右,这一事实表明,黑洞对其宿主星系的重塑可能远远超出人们的想象,"合著者、意大利罗马特雷大学天文学家埃利亚斯-卡蒙(EliasKammoun)补充说。XMM-牛顿(X-射线多镜任务)太空望远镜的艺术效果图。图片来源:D.Ducros;ESA/XMM-Newton,CCBY-SA3.0IGO被风阻挡的X射线活跃的星系中心会发出包括X射线在内的高能量光线。马卡里安817让研究人员眼前一亮,因为它变得异常安静。米兰达利用美国宇航局的斯威夫特天文台观测了这个星系:"X射线信号如此微弱,以至于我确信自己做错了什么!"利用欧空局更灵敏的X射线望远镜XMM-牛顿进行的后续观测揭示了真实情况:来自吸积盘的超高速风就像一块裹尸布,挡住了从黑洞周围(称为日冕)发出的X射线。这些测量结果得到了美国宇航局NuSTAR望远镜观测结果的支持。对X射线测量结果的详细分析显示,马尔卡里安817的中心并没有发出一"股"气体,而是在吸积盘的广大区域内产生了一股狂风。这股风暴持续了数百天,至少由三种不同的成分组成,每种成分的运动速度都是光速的几分之一。这幅艺术家的作品展示了从马卡里安817星系中心喷出的超高速风。这些风以每小时数百万公里的速度从广阔的太空区域中清除星际气体。没有了这些气体,星系就无法形成新的恒星,星系中心的黑洞也就没有什么可吃的了。插图显示了银河系中心的情况。一个超大质量黑洞从周围吸入气体,形成一个炙热、明亮的"吸积盘"(橙色)。造成风(白色)的原因是圆盘内的磁场,它以难以置信的高速将粒子抛向四面八方。这些风有效地阻挡了黑洞周围极热等离子体(称为日冕)发出的X射线(蓝色)。这解决了我们在理解黑洞和黑洞周围星系如何相互影响方面的一个未解之谜。包括银河系在内的许多星系,其中心周围似乎都有大片区域,但在这些区域中却很少有新恒星形成。这可以用黑洞风清除恒星形成气体来解释,但这只有在黑洞风的速度足够快、持续时间足够长,并且是由具有典型活动水平的黑洞产生的情况下才可行。"黑洞研究中的许多悬而未决的问题都需要通过长时间的观测来捕捉重要事件。这凸显了XMM-牛顿任务对未来的极端重要性。"欧空局XMM-牛顿项目科学家诺伯特-沙特尔(NorbertSchartel)说:"没有其他任务能够将高灵敏度和长时间、不间断观测的能力结合起来。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418837.htm手机版:https://m.cnbeta.com.tw/view/1418837.htm

封面图片

韦布望远镜定格最遥远黑洞合并事件

韦布望远镜定格最遥远黑洞合并事件访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器天文学家已在宇宙中的很多大质量星系(包括银河系)内,发现了超大质量黑洞。这些黑洞的质量是太阳质量的数百万到数十亿倍,很可能对其所在星系的演化产生重大影响。但对于这些黑洞是如何变得如此巨大,科学家仍然缺乏充分了解。在最新研究中,韦布空间望远镜为早期宇宙中黑洞的生长提供了新线索。最新研究主要作者、剑桥大学的汉娜·乌伯勒解释道,拥有活跃吸积物质的大质量黑洞具有独特的光谱特征,天文学家可以识别它们。但对于非常遥远的星系,比如最新研究中的星系,这些特征从地面无法观测到,只有韦布空间望远镜才能捕捉到。借助韦布空间望远镜,乌伯勒等人在黑洞附近发现了快速运动的稠密气体,以及由黑洞在吸积过程中通常会产生的高温和高度电离气体,为两个星系及其大质量黑洞正在合并提供了证据。最新发现表明,合并是黑洞快速生长的重要途径,即使在宇宙黎明时期也是如此,大质量黑洞从一开始就在塑造星系的进化。...PC版:https://www.cnbeta.com.tw/articles/soft/1431607.htm手机版:https://m.cnbeta.com.tw/view/1431607.htm

封面图片

NASA韦伯太空望远镜揭示了银河系进化和黑洞的情况

NASA韦伯太空望远镜揭示了银河系进化和黑洞的情况NASA的詹姆斯-韦伯太空望远镜(JWST)在一张巨大的新图像中揭示了被称为“斯蒂芬五重奏”的星系群的前所未有的细节。这个星系群的距离很近,给了科学家们一个观察星系合并和相互作用的旁观席位。天文学家们很少能如此详细地看到相互作用的星系是如何在彼此之间引发恒星形成的及这些星系中的气体是如何被扰动的。“斯蒂芬五重奏”是研究这些对所有星系都至关重要的过程的一个奇妙“实验室”。在一个前所未有的细节方面,该图像还显示了由该星系群中的一个超大质量黑洞驱动的外流。像这样紧密的星系群在早期宇宙中可能更常见,当时过热的下坠物质可能为非常有能量的黑洞提供了燃料。NASA的韦伯揭示了银河系的演变和黑洞的情况因在经典圣诞电影《生活多美好》中的突出表现而闻名的斯蒂芬五重奏是一个由五个星系组成的惊人视觉组合。现在,NASA的JWST以一种全新的方式揭示了斯蒂芬五重奏。这个巨大的马赛克是韦伯迄今为止最大的图像,其覆盖了约1/5的月球直径。它由近1000个独立的图像文件构成,包含超过1.5亿个像素。来自韦伯的信息为了解星系的相互作用如何在早期宇宙中推动星系演化提供了新的见解。由于其强大的红外视觉和极高的空间分辨率,韦伯显示了这个星系群中从未见过的细节。由数百万颗年轻恒星组成的闪闪发光的星团和新诞生恒星的星爆区在图像中熠熠生辉。由于引力的相互作用,气体、尘埃和恒星的扫尾正从几个星系中被拉出。最引人注目的是,韦伯太空望远镜捕捉到了巨大的冲击波,因为其中一个星系--NGC7318B击穿了这个星系团。斯蒂芬五重奏的五个星系加在一起,也被称为希克森紧凑型第92组(HCG92)。虽然被称为“五重奏”,但其中只有四个星系实际是紧紧靠在一起的并被卷入了宇宙的舞蹈中。第五个也就是最左边的星系被称为NGC7320,跟其他四个星系相比,它的位置很靠前。事实上,NGC7320距离地球只有4000万光年,而其他四个星系(NGC7317、NGC7318A、NGC7318B和NGC7319)约在2.9亿光年之外。跟数十亿光年外的更遥远的星系相比,这在宇宙中仍是相当接近的。研究像这些相对较近的星系有助于天文学家更好地理解在更遥远的宇宙中看到的结构。这种接近性为科学家们提供了一个见证星系合并和相互作用的旁观席位,这对所有的星系演化都是至关重要的。天文学家很少能如此详细地见证相互作用的星系是如何在彼此之间引发恒星形成以及这些星系中的气体是如何被扰动的。斯蒂芬五重奏是研究这些对所有星系都至关重要的过程的优秀“实验室”。像这样紧密的星系群在早期宇宙中可能更常见,当时它们的过热、下坠物质可能为称为类星体的高能黑洞提供了燃料。即使在今天,这个星系群中最顶端的星系--NGC7319--也藏有一个活跃的星系核,一个质量约为太阳2400万倍的超大质量黑洞。它正在积极地吸纳物质并放出相当于400亿个太阳的光能。韦伯用近红外光谱仪(NIRSpec)和中红外仪器(MIRI)对活动星系核进行了非常详细的...PC版:https://www.cnbeta.com/articles/soft/1307113.htm手机版:https://m.cnbeta.com/view/1307113.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人