NASA任务连战连捷 超级计算机在幕后做了什么努力?

NASA任务连战连捷超级计算机在幕后做了什么努力?这个气流可视化显示了美国宇航局的六人倾斜翼概念高级空中机动车在巡航或"飞机模式"下的涡流尾流。该图像显示了倾斜翼多旋翼配置的气流的复杂性,其中许多旋翼相互作用,机翼和机身。资料来源:NASA/PatriciaVenturaDiazfesta1.设计安全、高效的空中出租车。利用美国宇航局强大的超级计算机,研究人员正在模拟几种有前途的空中出租车配置的空气动力学性能,这些载具有朝一日将在城市和郊区运送乘客和货物。高度复杂的模拟将被用来帮助设计和开发这些未来的空中出租车--也被称为先进空中机动性(AAM)载具--它们将是安全、安静和高效的。美国宇航局通过确定关键研究领域和构思AAM载具的设计,在AAM的发展中发挥了重要作用。最近的模拟重点是倾斜翼和安静的单主旋翼AAM概念飞行器的性能。仿真是在美国宇航局位于加州硅谷的艾姆斯研究中心的高级超级计算机(NAS)设施上进行的,这使得这种复杂的仿真可以在短短几天内得到解决。了解这些旋转翼飞机的复杂流动结构是达到AAM性能和噪音水平目标的关键。先进超音速降落伞充气研究实验(ASPIRE)模拟的图像显示了流体-结构相互作用的动态和相对流速(马赫数,黄色为高,黑色为低)。该模拟的目的是与ASPIRE第一次飞行测试期间将出现的峰值充气力相匹配。资料来源:NASA/MichaelBarad和JonathanBoustani2.在危险的着陆过程中保持行星探测装置的安全。美国宇航局火星登陆器的进入、下降和着陆(EDL)序列被称为"恐怖七分钟",因为由于两个星球之间的信号滞后,数百个关键事件需要在没有地球干预的情况下成功发生。大约在下降四分钟后,航天器展开了一个降落伞,该降落伞必须尽可能均匀地充气,尽管有湍流的空气尾流,而且紧密编织的织物没有任何裂缝或破损。这是EDL最危险的方面之一,也是众所周知的对预测的挑战。利用该机构的艾特肯超级计算机,埃姆斯的工程师们正在开发通过模拟和分析超音速降落伞膨胀的许多情况来降低风险和成本的能力,而使用飞行试验来研究这些情况成本太高。仿真的另一个优势是可以提取精细的细节--这些信息可以帮助工程师开发下一代EDL系统,能够处理未来机器人火星任务的更重的有效载荷,如火星采样返回。这个可视化显示了使用NASA的多孔微结构分析(PuMA)软件对由碳/石墨制成的纤维毡状材料进行的传热模拟。在模拟中,一个小的温度梯度被强加在材料的微结构上,稳态温度曲线和热通量被确定。资料来源:NASA/JosephC.Ferguson,StanfordUniversity;FedericoSemeraro和JohnThornton,NASA/Ames3.在微观层面上对航天器的热屏蔽材料进行建模。NASA的多孔微结构分析(PuMA)软件使用X射线显微层析技术来生成材料内部结构的高分辨率三维图像。在埃姆斯开发的PuMA为用于航天器热屏蔽、超音速降落伞和陨石分析的材料提供了前所未有的洞察力。NASA的研究人员使用PuMA为未来的太空任务开发新的热保护系统(TPS)材料,而NASA的高性能超级计算机为材料科学家提供了对材料的微观结构进行全面建模的能力。这有助于确保未来航天器的安全,特别是在危险的下降阶段。虽然这个开源软件最初是作为预测航天器TPS的材料特性的工具而创建的,但PuMA已经扩展到为科学家提供将材料生成--从简单的形状到复杂的纤维编织几何形状--与材料的性能研究相结合的能力,如其导电性、弹性、渗透性,甚至其氧化的方式。2019年10月7日,西太平洋上的强热带气旋"海吉星"达到了超强台风级别。插图是2019年10月10日来自Himarawi-8卫星的可见光卫星图像。较大的图像是实验性GEOS模型产生的可见云图像。哈吉比斯有一个明确的台风眼,充满了浅层的、低层的云,周围是深层的对流带和长长的云流,被卷入东北方向的一个热带外锋系统。资料来源:NASA/WilliamPutnam4.预测天气和气候以保证人类安全。美国宇航局正在推动建模能力的边缘,利用超级计算机创建一个1.5公里(约1英里)分辨率的全球数字孪生地球。位于马里兰州格林贝尔特的NASA戈达德太空飞行中心的全球建模和同化办公室正在使用历史观测数据来模拟地球系统的天气和气候。美国宇航局全球地球观测系统(GEOS)模型和同化系统是该机构的旗舰系统,用于加强对美国宇航局大量地球观测数据的使用。随着机器学习能力的巨大扩展和超高速图形处理单元编程范式的改进,GEOS现在已经准备好在NASA内部为天气和气候研究提供一个实验性框架。GEOS模型将具有一系列能力,包括海洋-大气耦合地球系统建模,碳排放的高级研究,以及超高分辨率的传输。30亿年前金星的模拟表面温度图,有310米深的动态海洋。大陆上的温度大约或低于水的冰点。这是因为这个星球旋转得非常慢,在金星的夜晚,大陆变得相当寒冷。资料来源:美国国家航空航天局/迈克尔-韦5.探索我们太阳系内外行星的过去、现在和未来。超级计算机就像计算的"时间机器",科学家用它们来探索过去、现在和未来的宇宙。使用美国宇航局气候模拟中心的Discover超级计算机和ROCKE-3D计算机模型,来自纽约美国宇航局戈达德空间研究所的科学家正在模拟太阳系内外行星的气候。这些模拟显示,30亿年前,地球最近的行星邻居金星可能已经有足够长的时间处于温带状态,以至于有了海洋--使金星可能成为我们太阳系中的第一个宜居世界。在离地球更远的地方,科学家们在运行ROCKE-3D时发现,海洋特征比以前的模型更真实,太阳系外的半人马座b比以前认为的更适合居住。在离家更近的地方,对月球的模拟显示,靠近月球赤道的古火山所释放的水可以找到它的途径,进入永久阴影的极地地区,在那里我们有可能利用它进行未来的探索。...PC版:https://www.cnbeta.com.tw/articles/soft/1355405.htm手机版:https://m.cnbeta.com.tw/view/1355405.htm

相关推荐

封面图片

NASA 的任务因超级计算机短缺而被推迟

NASA的任务因超级计算机短缺而被推迟美国宇航局(NASA)的超级计算能力未能跟上最新技术发展的步伐,并且“超额认购和负担过重”,导致任务延迟,有时需要由团队购买自己的基础设施来解决。NASA内部审计机构监察长办公室发布的审计报告称“NASA需要新的承诺和持续的领导关注,以重振其高端计算工作。如果不做出重大改变,该机构的高端计算可能会限制未来的任务优先事项和目标。”NASA当前的超级计算设施存在超额分配、超负荷使用和过时的问题。例如,NASA的“先进超级计算设施”只有48个GPU和18,000个CPU。而SLS团队每年花费25万美元购买独立计算资源,而不是等待现有的资源可用。——

封面图片

2024年日全食:超级计算机预测与现实对比

2024年日全食:超级计算机预测与现实对比访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器PredictiveScienceInc.公司的科学家利用超级计算机和空间观测站的数据,旨在预测2024年4月8日日全食期间日冕的外观。图片来源:PredictiveScienceInc.、NASA/KeeganBarber这些预测有助于研究人员了解其太阳日冕模型的准确性,日冕沿着太阳磁场延伸。日食为从地球观测整个日冕提供了一个难得的机会,指导研究日冕的能量如何导致太阳耀斑和日冕物质抛射,从而破坏地球和太空的技术。2024年日全食日冕预测。资料来源:PredictiveScienceInc.2024年日全食实际合成图。图片来源:NASA/KeeganBarber研究人员使用了位于加利福尼亚硅谷美国宇航局艾姆斯研究中心的美国宇航局高级超级计算设施中的Aitken,Electra与Pleiades超级计算机,利用美国国家航空航天局太阳动力学天文台、欧空局(欧洲航天局)和美国国家航空航天局太阳轨道器提供的近实时数据创建了日冕的动态模型。研究小组的模型准确地预测了几个细节,包括图像左上方和左下方的长流线,但与真实图像相比,流线的位置略有偏差。这很可能是因为太阳远侧的一些新活动影响了日冕的外观,但当时还没有看到这些活动,因此无法将其纳入模型。一旦纳入,模型就会与日冕的观测照片更加吻合。PredictiveScience公司的研究科学家库珀-唐斯(CooperDowns)认识到日冕本身非常复杂,在太阳极大期很难预测,他说:"我们对这次模拟感到非常兴奋。它确实产生了很多科学后果,我想我们会对其进行长期探索。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431308.htm手机版:https://m.cnbeta.com.tw/view/1431308.htm

封面图片

从阿波罗到阿耳忒弥斯:利用NASA的超级计算机推进登月计划

从阿波罗到阿耳忒弥斯:利用NASA的超级计算机推进登月计划美国国家航空航天局(NASA)的"阿耳特弥斯"(Artemis)任务旨在扩大月球探索的范围,这些任务面临着新的挑战,因为着陆器体积更大,运行风险更高。这些任务必须在低重力和多尘表面等具有独特挑战的环境中驾驭复杂的月球着陆和升空。资料来源:帕特里克-莫兰,美国宇航局艾姆斯研究中心/安德鲁-韦弗,美国宇航局马歇尔太空飞行中心通过"阿耳特弥斯",NASA计划在月球表面执行人类和机器人任务,探索比以往更多的月球区域。由于未来的着陆器将比阿波罗着陆器更大,配备的发动机也更强劲,因此与着陆和升空期间的操作相关的任务风险要大得多。由于美国宇航局的目标是在月球上建立持续的人类存在,因此任务规划人员必须了解未来的着陆器在未开发的月球表面着陆时是如何与月球表面相互作用的。在月球上着陆非常棘手。当宇航员和有效载荷飞抵月球表面时,航天器通过启动火箭发动机来抵消月球的引力,从而控制飞船的下降。这种情况发生在地球上难以复制和测试的极端环境中,即低重力、无大气层以及月球碎屑的独特性质,尤其是月球表面一层细小、尖锐、松散的尘埃和岩石会对航天器造成极大威胁。美国宇航局位于阿拉巴马州亨茨维尔的马歇尔太空飞行中心的研究人员制作了阿波罗12号着陆器发动机羽流与月球表面相互作用的模拟动画。该动画描述了发动机关闭前最后半分钟的下降过程,显示了羽流在平坦的计算表面上施加的预测力。这种力被称为剪应力,是施加在一定面积上的横向力或侧向力,是流体流经表面时造成侵蚀的主要原因。这里,波动的径向图案显示了预测的剪应力强度。较低的剪切应力为深紫色,较高的剪切应力为黄色。资料来源:帕特里克-莫兰,美国宇航局艾姆斯研究中心/安德鲁-韦弗,美国宇航局马歇尔太空飞行中心着陆和升空带来的风险和挑战每次航天器着陆或升空时,其发动机都会向表面喷射出超音速的炽热气体羽流,强大的力量会掀起尘埃,并将岩石或其他碎片高速抛射出去。这会造成视觉障碍和尘埃云等危险,从而干扰导航和科学仪器,或对着陆器和附近的其他硬件和结构造成损坏。此外,羽流还会侵蚀着陆器下方的地表。虽然阿波罗级着陆器没有形成陨石坑,但即将执行的阿耳特弥斯任务计划中的较大型着陆器对表面的侵蚀程度如何,是否会在着陆区迅速造成陨石坑,从而给着陆器的稳定性和着陆器上的宇航员带来风险,这些都是未知数。为了提高对羽面相互作用(PSI)的认识,美国宇航局位于阿拉巴马州亨茨维尔的马歇尔太空飞行中心的研究人员开发了新的软件工具,用于预测美国宇航局项目和任务的PSI环境,包括人类着陆系统、商业月球有效载荷服务计划和未来的火星着陆器。这些工具已被用于预测即将执行的月球任务中的陨石坑和视觉遮挡,并帮助美国宇航局最大限度地降低未来着陆任务中航天器和乘员的风险。NASA马歇尔团队最近制作了阿波罗12号着陆器发动机羽流与月球表面相互作用的模拟,预测的侵蚀与着陆时发生的情况非常吻合。(该动画描述了发动机熄火前最后半分钟的下降过程,显示了羽流对平坦计算表面施加的预测力。这种力被称为剪应力,是施加在一定面积上的横向力或侧向力,是流体流经表面时造成侵蚀的主要原因。这里,波动的径向图案显示了预测的剪应力强度。较低的剪应力为深紫色,较高的剪应力为黄色。这些模拟在位于加利福尼亚硅谷美国宇航局艾姆斯研究中心的美国宇航局高级超级计算设施的Pleaides超级计算机上运行了数周,产生了数TB的数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1398479.htm手机版:https://m.cnbeta.com.tw/view/1398479.htm

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

欧洲最新世界级超级计算机在巴塞罗那建成

欧洲最新世界级超级计算机在巴塞罗那建成欧盟委员会21日发布公报说,欧洲最新的世界级超级计算机“MareNostrum5”已在西班牙巴塞罗那超级计算中心建成,将从明年3月起向欧洲科学界和工业界用户开放。欧盟委员会说,作为世界最强大的十台超级计算机之一,“MareNostrum5”的峰值性能可达每秒31.4亿亿次浮点运算。该计算机专门为解决复杂的科学问题而设计,将支持欧洲在药物和疫苗开发、模拟病毒传播、气候变化、工程、材料科学和地球科学等领域的研究。这台超算也将助力人工智能开发,它使用当今最先进的加速器芯片,可提高欧洲大型人工智能语言模型的性能。欧盟委员会介绍,“MareNostrum5”完全由可持续能源提供动力,其运行时产生的热量将用于为所在建筑供暖,是欧洲最环保的超级计算机。该超算系统总投资额超过1.5亿欧元。今年11月公布的最新全球超级计算机500强榜单显示,世界排名前十的超级计算机中有3台来自欧盟,芬兰的“LUMI”排名第五,意大利的“Leonardo”排名第六,西班牙的“MareNostrum5”排名第八。(新华网)

封面图片

NASA利用先进的超级计算技术设计未来飞机

NASA利用先进的超级计算技术设计未来飞机美国宇航局的高性能计算机已经生成了这张图像,显示了正在虚拟风洞中测试的跨音速桁架支撑翼(TTBW)飞机概念。该图像强调了飞机的机翼与周围空气的互动。资料来源:NASA/OliverBrowneTTBW飞机由于其较长、较薄的机翼由空气动力桁架支撑,因此产生的阻力较小。在飞行中,它可以比标准客机少消耗10%的航空燃油。跨音速桁架支撑翼飞机自由空气配置的可视化,显示了时间平均的表面压力系数轮廓(红色为高,蓝色为低)和由表面皮肤摩擦力定义的流线。图像显示了沿机翼跨度的冲击,包括冲击位置的跨度变化,以及突出冲击下游的分离流区域的流线。OliverBrowne,NASA/Ames位于加利福尼亚的美国宇航局艾姆斯研究中心的高级超级计算部门制作了这张图片,作为转型工具和技术项目为TTBW研究开发计算工具工作的一部分。1月,NASA为其可持续飞行演示器项目选择了波音公司的一个TTBW概念。美国宇航局和波音公司已经联手设计了一架跨音速桁架机翼(TTBW)飞机,该飞机采用了尖端技术,可以大大提高商用飞机的燃油效率。TTBW飞机具有独特的结构,具有高长宽比的机翼和机翼及支柱,可应对复杂的空气动力学现象,如跨音速缓冲、分离流动和湍流尾流。标准的行业做法是采用基于雷诺平均纳维-斯托克斯(RANS)的计算流体动力学(CFD)分析来预测缓冲区的发生,但准确的预测可能需要更精确的尺度解算CFD模拟来预测缓冲区的发生和分离流的发展。因此,NASA的先进航空运输技术项目已经启动了一项多中心合作的努力,以创建新的模拟技术来预测TTBW和类似的桁架式机翼配置的性能,特别是预测跨音速缓冲的开始。...PC版:https://www.cnbeta.com.tw/articles/soft/1349587.htm手机版:https://m.cnbeta.com.tw/view/1349587.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人