附着于叶片的贴片可监测作物疾病和环境压力因素

附着于叶片的贴片可监测作物疾病和环境压力因素植物病害每年导致约20%至40%的农作物损失,不仅导致粮食产量减少,而且导致物种多样性减少,更不用说疾病控制的成本。据联合国粮食及农业组织估计,2030年将有近6.7亿人(占世界人口的8%)营养不良。智能农业,即利用创新技术提供有关水、土壤类型和疾病等重要因素的信息,作为确保全球粮食安全的一种手段已经获得关注。能够提供实时、无创监测的植物穿戴式传感器并不是一个新事物。但现有的传感器能监测的范围有限,灵敏度低,而且不能发现特定的疾病。考虑到保持作物健康的重要性,北卡罗来纳州立大学的研究人员开发了一种更先进的电子贴片,直接放在植物的叶子上,监测病原体感染和环境压力。这种贴片很小--只有1.2英寸(30毫米)长--由一种含有传感器和银纳米线电极的柔性材料制成。它们被放置在植物的叶子下面,那里有更多的气孔,即让植物"呼吸"的孔。这些贴片是早期版本的升级版,通过测量挥发性有机化合物来检测植物疾病。该研究的共同通讯作者朱勇说:"新的贴片集成了额外的传感器,使它们能够监测温度、环境湿度以及植物通过其叶片'呼出'的水分数量。"为了测试他们的新补丁,研究人员转向了不起眼的西红柿,这是消费最广泛的农产品之一。茄科植物容易受到许多病原体的影响,包括真菌、病毒和细菌,这些病原体会大大降低作物产量和水果质量。温室中的番茄植株感染了三种病原体:番茄斑萎病毒(TSWV);早疫病,一种真菌感染;以及晚疫病,由一种叫做卵菌的真菌类病原体引起。这些植物还被暴露在非生物(非生活)压力下,如过度浇水、干旱、缺乏光照和高盐度。这项研究的共同通讯作者魏青山说:"这很重要,因为种植者越早发现疾病或真菌感染,他们就越有能力限制疾病的传播并保护他们的作物。此外,种植者越能快速识别非生物压力,如被盐水入侵污染的灌溉水,他们将能更好地应对相关挑战并提高作物产量。"在试验了各种传感器的组合后,研究人员使用机器学习模型分析了他们的数据,以确定何种组合能更有效地识别疾病和压力。该模型证实,要做到最有效,至少需要三个传感器。"我们检测所有这些挑战的结果是全面的,"魏青山说。"例如,我们发现,在一个补丁上使用三个传感器的组合,我们能够在植物首次被感染后四天检测到TSWV。这是一个重要的优势,因为西红柿通常在10到14天内不会显现感染TSWV的任何症状"。研究人员说,他们接近于创造一个作物种植者可以使用的补丁。他们打算制作无线贴片,然后在温室外的田间进行测试,以确保它们在真实世界的条件下发挥作用。朱勇说:"我们目前正在寻找工业和农业合作伙伴,帮助我们推进这项技术的开发和测试。"这可能是一个重大的进步,帮助种植者防止小问题变成大问题,并帮助我们以一种有意义的方式解决粮食安全挑战。"这项研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1354529.htm手机版:https://m.cnbeta.com.tw/view/1354529.htm

相关推荐

封面图片

天然“超级真菌”AMF可使作物产量提高40%

天然“超级真菌”AMF可使作物产量提高40%这种真菌天然存在于健康的土壤中,能穿透植物根部形成树状结构(菌核)。当它们分枝时,会增加植物根部的表面积,从而促进养分吸收。这项研究的共同负责人、苏黎世大学和农业研究中心的土壤生态学家马塞尔-范德海登(MarcelvanderHeijden)说:"在四分之一的地块上,菌根真菌使产量提高了40%,这是巨大的进步。"研究人员在调查为什么有三分之一的土壤几乎没有增产甚至减产时发现,健康土壤的产量与健康土壤相同(或者在某些情况下产量更低)。来自Agroscope公司的共同第一作者StefanieLutz说:"我们发现,当土壤中已经存在大量真菌病原体时,接种效果最好。"真菌被认为是土壤的第一道防线,可以抵御攻击植物的病原体,这些病原体会大大降低作物产量。因此,在有病原体的田地里,如果没有真菌,产量可以保持不变,而在没有病原体污染的田地里,真菌对产量的有利影响则较低。作为有益生物,真菌还能帮助植物从土壤中吸收养分。在广泛结果的基础上,研究小组随后利用土壤微生物组指标成功地确定了播种前任何给定地块的植物生长变化,准确率高达86%。来自巴塞尔大学的共同第一作者克劳斯-施拉比(KlausSchläppi)说:"我们能够预测10块田地中9块的接种成功率,因此也能在田间季节到来之前预测收获产量。这种可预测性使我们有可能在真菌能够发挥作用的田地里有针对性地使用真菌。这是将这些技术发展成为可靠的农业方法的关键因素"。这一发现可以提高粮食产量,而无需大量使用杀虫剂和化肥。联合国2022年的一份报告发现,世界上有40%的土壤中度或严重退化,并预测这一比例可能上升到90%。如何在更大的商业规模上有效地传播真菌还有待解决,但"这次田间试验的结果代表着向更可持续的农业迈进了一大步",范德海登说。这项研究发表在《自然-微生物学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1400895.htm手机版:https://m.cnbeta.com.tw/view/1400895.htm

封面图片

"哨兵植物"可通过叶片中的压力传感器拯救作物

"哨兵植物"可通过叶片中的压力传感器拯救作物经过特殊标记的"哨兵植物"很快就能对作物问题(如虫害或细菌感染)发出预警。这些植物将利用两个"发光"传感器,对叶片中与压力有关的化合物做出反应。最常用的两种信号分子是过氧化氢和水杨酸。四年前,麻省理工学院的迈克尔-斯特拉诺教授及其同事创造了一种叶片集成传感器,它能在过氧化氢存在时发出荧光。这种"传感器"实际上由许多单壁碳纳米管组成,每根碳纳米管都包裹着一条被称为寡聚体的合成DNA链。当把含有这些"电晕相分子识别"(CoPhMoRe)纳米传感器的载体溶液涂抹在叶片背面时,这些微小的物体就会穿过叶片表面被称为气孔的微小开口。纳米传感器最终进入叶肉中层,叶肉中层是叶片的内层,大部分光合作用都在叶肉中进行。当该层随后产生过氧化氢时,过氧化氢会与纳米传感器结合,使其发出荧光。这种荧光很容易用红外摄像机检测到。虽然过氧化氢的产生本身就能表明某些植物胁迫因素的存在,但如果能同时检测到水杨酸,那就更有用了。有鉴于此,斯特拉诺的团队改变了该技术中使用的低聚物结构,创造出了第二种CoPhMoRe纳米传感器,这种传感器在与水杨酸而不是过氧化氢结合时会发出荧光。在研究中,用水杨酸传感纳米传感器(蓝色)、过氧化氢传感纳米传感器(红色,右图)和惰性对照纳米传感器(绿色)处理单个植物叶片的不同部分。在对白菜植物进行的实验室测试中,将含有两种不同类型纳米传感器的溶液涂抹在同一片叶子的不同部位。然后让这些植物承受强光、高温、细菌感染和昆虫叮咬等压力。研究发现,前三种压力会在几分钟内产生过氧化氢,然后在两小时内的某个时间段产生水杨酸。不过,水杨酸出现的确切时间却因压力源的类型而有一致的差异。这意味着,如果用红外摄像机对经过CoPhMoRe增强的植物进行持续监测,农民就可以根据植物叶片从开始产生过氧化氢到随后产生水杨酸之间的时间间隔,判断植物是否处于光、热或细菌胁迫的早期阶段。如果只产生过氧化氢,那就意味着昆虫叮咬是罪魁祸首。当然,如果两种信号分子都没有产生,那就意味着植物没有问题。"这两个传感器结合在一起,可以准确地告诉用户植物正在承受什么样的压力。"Strano教授说:"在植物内部,你可以实时看到化学变化的起伏,每一种变化都是不同胁迫的指纹。我们正在将这项技术应用到诊断中,它能比任何其他传感器更快地为农民提供实时信息,足以让他们进行干预。"有关这项研究的论文最近发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1428270.htm手机版:https://m.cnbeta.com.tw/view/1428270.htm

封面图片

小型哺乳动物被认为是一种威胁生命的疾病的孵化器

小型哺乳动物被认为是一种威胁生命的疾病的孵化器由于真菌感染在人类中呈上升趋势,卫生官员了解这些病原体的来源至关重要。发表在《真菌生物学前沿》上的一项新研究显示,小型哺乳动物可以作为这些真菌感染的储库。这意味着这些啮齿类动物可能充当新出现的真菌病原体的储库、散布媒介和孵化器。PC版:https://www.cnbeta.com/articles/soft/1327471.htm手机版:https://m.cnbeta.com/view/1327471.htm

封面图片

睡莲可能会扮演我们对抗真菌病原体时的超级英雄

睡莲可能会扮演我们对抗真菌病原体时的超级英雄官方数据显示,每年约有8000名美国人死于真菌感染,但这一数字可能要高得多,因为许多病例未被诊断出来,而且作为一种"机会性病原体",真菌可以攻击衰弱的免疫系统,导致复杂的并发症。世界卫生组织去年呼吁对真菌病原体给予紧急关注,因为在气候变化的刺激下,真菌病原体正变得越来越普遍,威胁也越来越大。不过,也有一些好消息。俄克拉荷马大学(UO)的科学家们可能在一种睡莲或荷花中发现了一种分子,可以抵御真菌感染。俄克拉荷马大学道奇家族文理学院化学与生物化学系教授罗伯特-西切维奇(RobertCichewicz)说:"让我们感到兴奋的分子叫做persephacin。这一抗真菌发现似乎能对广谱的传染性真菌起作用,而且它对人体细胞无毒,这一点非常重要,因为目前的许多治疗方法都对人体有毒。"研究真菌长达二十年的Cichewicz指出,植物为抵御攻击而开发的策略可能是我们抵御病原体威胁的最佳选择。与细菌一样,病原真菌也能快速适应和规避现有的治疗方法;在生物进化的'军备竞赛'中,这是一项令人印象深刻的壮举,科学界不得不奋起直追。Cichewicz说:"真菌遍布植物界,植物和真菌经常一起工作。"其中一些真菌会杀死竞争对手,或阻止昆虫啃食植物。我们假设,如果这些居住在植物中的真菌(被称为内生菌)能够通过杀死入侵的真菌来帮助植物抵御感染,那么这些分子或许也能保护人类和动物免受真菌病原体的侵害。事实证明,我们是对的。"虽然它可能不是一颗银弹,但persephacin抵御真菌感染的能力是科学家们在这一令人沮丧的领域取得的一项有希望的进展。Cichewicz说:"抗真菌抗药性不断演变,这可能会提供一种新的选择。这就是为什么这种分子如此令人兴奋。"这项研究发表在《天然产品杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1375745.htm手机版:https://m.cnbeta.com.tw/view/1375745.htm

封面图片

世界卫生组织已正式要求中国提供有关呼吸道疾病增加和儿童聚集性肺炎的详细信息。

世界卫生组织已正式要求中国提供有关呼吸道疾病增加和儿童聚集性肺炎的详细信息。中国国家卫健委在上称中国呼吸道感染高发,并将其归因于新冠防疫限制的解除和已知病原体的传播,例如流感、肺炎支原体、呼吸道合胞病毒和新冠病毒。世卫组织表示,已通过《国际卫生条例》机制,要求中方提供有关儿童聚集性肺炎的更多流行病学和临床信息,以及实验室结果。世卫组织还要求进一步了解中国已知病原体近期的传播趋势以及卫生系统当前所面临的负担。()

封面图片

科学家发现不使用有毒化学物质就能消灭作物灰霉病的方法

科学家发现不使用有毒化学物质就能消灭作物灰霉病的方法如果你曾遇到过草莓上覆盖着一层模糊的灰色物质,那你就亲眼目睹了灰霉病的影响。这种可怕的真菌影响着1400多种植物,直到现在,还没有一种有效的治疗方法。控制灰霉病的关键可能在于发现了霉菌细胞分泌的脂质"气泡"。事实上,加州大学河滨分校的最新研究表明,这些气泡对于病原体与其宿主(包括许多类型的真菌以及细菌和哺乳动物)之间的交流至关重要。在这种情况下,研究人员发现灰霉已经学会了如何利用气泡实现成功感染。领导该研究项目的UCR微生物学和植物病理学教授金海玲说:"由于难以分离和研究,这些脂质气泡(也称为胞外囊泡)的重要功能几十年来一直被忽视。"金教授说:"现在我们知道,霉菌和它的植物宿主一样,也利用细胞外囊泡来保护和传递相当于武器的东西--小RNA分子,这些分子能抑制参与植物免疫系统的基因。"生长在农产品上的灰霉。图片来源:HailingJin/UCR研究人员在《自然-通讯》(NatureCommunications)杂志上详细介绍了这一发现,研究人员不仅发现灰霉会在这些脂质气泡中分泌毒性RNA,还发现一种特殊的蛋白质是灰霉产生气泡的关键。这种蛋白质名为"tetraspanin",出现在气泡的表面。研究人员发现,如果消除霉菌制造四蛋白的能力,霉菌分泌和输送气泡的能力就会大大降低。金说:"如果我们敲除气泡的这一关键成分,就能削弱它们传递小RNA或其他分子等抑制宿主免疫的武器的能力。"在此之前,同一研究小组还发现了让真菌产生小RNA分子的基因。敲除这些基因以及让真菌制造四蛋白的基因,就能制造出新一代抑制灰霉病的"RNA杀菌剂"。"万物都有RNA,而且RNA很容易被人类和动物消化。RNA可以在环境中迅速降解,不会留下任何有毒残留物,"金说。目前,灰霉病的主要治疗方法是杀菌剂,而这些化学物质会对人类和动物的健康以及我们的环境造成负面影响。灰霉病是世界上对粮食作物危害第二大的真菌,仅次于水稻病原体Magnaporthe。一种基于RNA的环保型杀真菌剂可以攻击分泌胞外囊泡的能力,也可能对Magnaporthe和其他真菌病原体有效。"随着气候变化如此之快,许多真菌感染可能会恶化。我们很高兴能开发出适用范围如此广泛的保护全球食品供应的新型环保方法,"金说。...PC版:https://www.cnbeta.com.tw/articles/soft/1375181.htm手机版:https://m.cnbeta.com.tw/view/1375181.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人