革命性的锂离子电池技术有望使电动车续航能力提高10倍

革命性的锂离子电池技术有望使电动车续航能力提高10倍由浦项工科大学教授SoojinPark(化学系)和YounSooKim(材料科学与工程系)以及西江大学大学教授JaegeonRyu(化学与生物分子工程系)领导的研究小组开发了用于高容量阳极材料的带电聚合物粘合剂,该材料既稳定又可靠,提供的容量是传统石墨阳极的10倍甚至更高。这一突破是通过用硅阳极代替石墨,结合分层带电聚合物,同时保持稳定性和可靠性而实现的。该研究结果作为封面文章发表在《先进功能材料》杂志上。像硅这样的高容量阳极材料对于制造高能量密度的锂离子电池至关重要;它们可以提供至少10倍于石墨或其他现有阳极材料的容量。但存在的挑战是,高容量负极材料在与锂反应过程中的体积膨胀对电池的性能和稳定性构成了威胁,为了缓解这一问题,研究人员一直在研究能够有效控制体积膨胀的聚合物粘合剂。然而,迄今为止的研究仅仅集中在化学交联和氢键上。化学交联涉及粘合剂分子之间的共价键,使其成为固体,但有一个致命的缺陷:一旦断裂,键就无法恢复。另一方面,氢键是分子之间基于电负性差异的可逆的二次结合,但其强度(10-65千焦/摩尔)相对较弱。研究小组开发的新聚合物不仅利用了氢键,而且还利用了库仑力(正负电荷之间的吸引力)。这些力的强度为250千焦/摩尔,比氢键的强度高得多,但它们是可逆的,因此容易控制体积膨胀。高容量阳极材料的表面大多带负电,而分层带电的聚合物交替排列,带正负电,可以有效地与阳极结合。此外,该团队还引入了聚乙二醇来调节物理特性并促进锂离子的扩散,从而形成了锂离子电池中发现的厚实的高容量电极和最大的能量密度。SoojinPark教授解释说:"这项研究有可能通过加入高容量的阳极材料来大幅提高锂离子电池的能量密度,从而延长电动汽车的行驶里程。硅基阳极材料有可能将驾驶里程提高至少10倍"。...PC版:https://www.cnbeta.com.tw/articles/soft/1353187.htm手机版:https://m.cnbeta.com.tw/view/1353187.htm

相关推荐

封面图片

新的充电算法可将锂离子电池的寿命延长一倍

新的充电算法可将锂离子电池的寿命延长一倍柏林亥姆霍兹中心(HZB)和柏林洪堡大学的一个欧洲研究小组开发出一种替代充电方案,使锂离子电池的寿命比现在更长。研究结果表明,通过改变充电器向电解质材料输送电流的方式,电池在经过数百次放电-充电循环后仍能保持较高的能量容量。锂离子电池是一种结构紧凑、坚固耐用的能源容器,已成为人们的宠儿。电动汽车和电子设备都依赖于它们,但随着电解质穿过分隔阳极和阴极的薄膜,它们的容量会逐渐降低。目前最好的商业级锂离子电池使用的电极由一种名为NMC532的化合物和石墨制成,使用寿命长达8年。传统的充电方式是使用恒定电流(CC)的外部电能。研究分析了使用CC充电时电池样品的情况,发现阳极的固体电解质界面(SEI)"明显变厚"。此外,他们还在NMC532和石墨电极结构中发现了更多裂纹。较厚的SEI和电极上较多的裂缝意味着锂离子电池容量的显著损失。因此,研究人员开发了一种基于脉冲电流(PC)的充电协议。使用新的PC协议对电池充电后,研究小组发现SEI接口变薄了很多,电极材料发生的结构变化也更少。研究小组利用欧洲两个领先的粒子加速同步加速器设施"BESSYII"和"PETRAIII"进行了脉冲电流充电实验。他们发现,PC充电可促进石墨中锂离子的"均匀分布",从而减少石墨颗粒中的机械应力和裂纹。该方案还能抑制NMC532阴极的结构退化。研究表明,方波电流的高频脉冲效果最好。测试表明,PC充电可使商用锂离子电池的使用寿命延长一倍,容量保持率达到80%。这项研究的共同作者、柏林工业大学教授JuliaKowal博士说:"脉冲充电可以在电极材料和界面的稳定性方面带来许多优势,并大大延长电池的使用寿命。"...PC版:https://www.cnbeta.com.tw/articles/soft/1427548.htm手机版:https://m.cnbeta.com.tw/view/1427548.htm

封面图片

水电池有望5年内取代锂离子电池 不会燃爆、可回收再利用

水电池有望5年内取代锂离子电池不会燃爆、可回收再利用研究团队目前已经开发出用于钟表的硬币大小的水基电池原型,以及类似于AA或AAA电池的圆柱形电池。电池通过产生从电池的正极(阴极)到负极(阳极)的电子流来储存能量。当电子向相反方向流动时,它们会消耗能量,电池中的液体是用来在两端之间来回传递电子的。在水电池中,电解液是加了一些盐的水,而不是硫酸或锂盐之类的东西。目前,这种电池的使用寿命与市场上的锂离子电池相当,能量密度约为每公斤75瓦时,约为最新款特斯拉汽车电池的30%,未来通过开发新型纳米材料作为电极还有望再次提高能量密度。此外,这种电池制作工艺简单,所用材料在自然界中含量丰富,价格低廉,毒性更低。科学家称,短期1到3年内有望替代铅酸电池,5到10年内有望取代锂离子电池。...PC版:https://www.cnbeta.com.tw/articles/soft/1422460.htm手机版:https://m.cnbeta.com.tw/view/1422460.htm

封面图片

NanoGraf创下硅阳极18650锂离子电池新纪录 能力密度增至810Wh/L

NanoGraf创下硅阳极18650锂离子电池新纪录能力密度增至810Wh/L总部位于芝加哥的NanoGrafTechnologies,刚刚宣布了能量密度高达810Wh/L(容量4.0Ah)的圆柱形18650锂离子电池。其实早在2021年,NanoGraf就已经公布800Wh/[email protected]的版本,但现在该公司又抵达了新的里程碑。PC版:https://www.cnbeta.com/articles/soft/1329657.htm手机版:https://m.cnbeta.com/view/1329657.htm

封面图片

使用回收材料的锂离子电池即将在美国投产

使用回收材料的锂离子电池即将在美国投产电池材料生产商巴斯夫宣布与石墨烯能源产品制造商NanotechEnergy合作,为北美客户生产采用回收材料的锂离子电池。巴斯夫将使用密歇根州巴特尔克里克工厂的回收金属来制造阴极活性材料,而Nanotech将使用这些材料来制造锂离子电池。据巴斯夫称,用回收金属制造电池可以减少约25%的二氧化碳足迹。来源:投稿:@ZaiHuaBot频道:@TestFlightCN

封面图片

中国上半年锂离子电池产量同比增150%

中国上半年锂离子电池产量同比增150%中国锂离子电池产业2022年上半年实现高速增长。根据行业规范公告企业信息和行业协会测算,上半年全国锂离子电池产量超过280GWh,同比增长150%,全行业收入突破4800亿元(人民币,下同,约978亿新元)。根据中国工业和信息化部网站消息,锂离子电池环节,上半年储能电池产量达到32GWh,新能源汽车动力电池装车量约110GWh。锂离子电池产品出口同比增长75%。一阶材料环节,上半年正极材料、负极材料、隔膜、电解液产量分别达到73万吨,55万吨,56亿平方米、34万吨,同比增长均超过55%。二阶材料环节,上半年碳酸锂、氢氧化锂产量分别达15万吨、10.2万吨,分别同比增长34%、25%。电池级碳酸锂、电池级氢氧化锂(微粉级)价格高位震荡,上半年均价分别为每吨44.5万元、每吨43.2万元。发布:2022年8月5日1:16PM

封面图片

东芝开发出无钴新型锂离子电池 可在5分钟内充电至80%

东芝开发出无钴新型锂离子电池可在5分钟内充电至80%钴和镍被广泛用作锂离子电池正极材料的组成部分,然而,钴是一种稀有金属,在成本稳定性和供应链可靠性方面存在潜在问题。而东芝的新型锂离子电池不含钴,含镍较少,在成本和资源节约方面是一种优越的解决方案。在锂离子电池中使用5V级高电位正极材料将提高电池电压和功率性能,但它也有一些缺陷:分解产物会催化电解液中溶剂分解,还会产生降低电池性能的气体的副反应。而东芝声称,其新型锂离子电池可显著改善这些问题。东芝表示,这种新电池的特点包括支持超快速充电,可在5分钟内充电至80%,以及长寿命,即使在60摄氏度高温下充放电100次循环后,容量保持率仍高达99.2%。作为锂离子电池的主要市场之一,汽车行业正在探索高压快充技术,已解决用户的“充电焦虑”和“里程焦虑”。且高电压电池将减少电池模块所需的电池堆数量,降低成本。东芝的研究发现,电解液在高电位正极材料表面分解并产生气体,并导致金属成分溶解并沉积在负极表面。该公司利用这些发现开发了一种技术,有效地抑制正极材料与电解液的反应。该公司还开发了一项技术,可以限制负极表面失活锂离子的转移,以改善电池的性能和寿命。通过这些技术的结合,即使使用传统的高导电性电解液,也成功抑制了气体生成。东芝研究开发中心纳米材料前沿研究实验室高级研究员YasuhiroHarada表示:“为了将该技术部署到汽车用途,我们需要增加容量才能实现这一目标。为了把电池做得更大,我们还需要大量的验证,我们认为应该从技术障碍较低的领域开始,然后瞄准技术障碍较高的汽车应用。关于车载电池的商业化,我们会考虑技术进步,并与电池部门协商,验证目标是否正确。如果有任何制造商,包括汽车制造商感兴趣,我们会一起前进。”...PC版:https://www.cnbeta.com.tw/articles/soft/1400415.htm手机版:https://m.cnbeta.com.tw/view/1400415.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人