曾被宣布“野外灭绝” 长江鲟时隔23年首次自然产卵

曾被宣布“野外灭绝”长江鲟时隔23年首次自然产卵此消息传自四川宜宾市“长江鲟野化繁殖实验”中,此前一周,科研人员将20尾雌雄成体长江鲟放入空间大小45立方米的人工产卵巢内,通过精准调控水流速度、模拟产卵河床环境,引导长江鲟在天然水域进行自然产卵。实验很成功:长江鲟在天然水域首次实现自然产卵,并在同一环境下,成功孵化出首批长江鲟幼苗。中国水产科学研究院长江水产研究所研究员杜浩表示,此次实验是从多年来的室内仿生态繁殖成功走向野外自发交配产卵繁殖,为长江鲟实现自然繁殖、恢复重建野外种群带来了新的希望。...PC版:https://www.cnbeta.com.tw/articles/soft/1351347.htm手机版:https://m.cnbeta.com.tw/view/1351347.htm

相关推荐

封面图片

世界自然保护联盟(IUCN)更新全球物种红色名录,根据全球鲟鱼再评估结果确认白鲟“灭绝”,原属“极危”的长江鲟列为“野外灭绝”。

(IUCN)更新全球物种红色名录,根据全球鲟鱼再评估结果确认白鲟“灭绝”,原属“极危”的长江鲟列为“野外灭绝”。白鲟1989年被列为国家一级保护野生动物,1996年IUCN列为“极危级”,2009年再次评估时定为“极危(可能灭绝)”。最后一尾白鲟活体记录是在2003年1月,在四川宜宾江段被误捕,经成功救护后放流。科技日报2020年1月,形容对白鲟实质性保护工作2006年后才启动,但研究推算白鲟在2005至2010年时已经灭绝;灭绝主因是水利工程切断洄游通道。()

封面图片

科学家首次为水族馆培育的珊瑚建立"家族树" 协助未来移植到自然环境

科学家首次为水族馆培育的珊瑚建立"家族树"协助未来移植到自然环境在今天(11月14日)发表在《海洋科学前沿》杂志上的一项研究中,一个由斯坦哈特水族馆生物学家和加州科学院珊瑚繁殖实验室的研究人员组成的多元化团队首次为水族馆繁殖的珊瑚制作了血统,或"家谱",并提供了一份维持水族馆繁殖的珊瑚的遗传多样性的最佳做法清单。馆长丽贝卡-奥尔布赖特博士说:"遗传多样性是使物种能够适应气候变化带来的无数威胁的原因。"她创建了珊瑚产卵实验室,这是地球上仅有的几个能够成功繁殖珊瑚的设施之一。奥尔布赖特的工作是学院"珊瑚礁的希望"倡议的一个组成部分,该倡议旨在阻止珊瑚礁在这一代的衰退。"对于像我们珊瑚产卵实验室这样的设施来说,确保每一代珊瑚的多样性使我们能够进行更有力的实验,这是更好地了解珊瑚如何在我们不断变化的地球上茁壮成长的关键因素。对于那些进行外植的组织来说,遗传多样性的增加意味着在野外生存的机会更大"。学院馆长丽贝卡-奥尔布赖特博士在帕劳潜水,这项研究的珊瑚是在那里收集的在这项研究中,研究人员对2019年和2020年在珊瑚繁殖实验室产下的两代Acroporahyacinthus珊瑚的父母系和后代进行了遗传分析。根据珊瑚的DNA之间的相似性,研究人员能够确定个体之间的关系,如亲子关系或兄弟姐妹关系。"珊瑚是广播式产卵,这意味着多个珊瑚群同时向水中释放精子和卵子,因此没有办法立即判断哪个珊瑚养育了哪个后代,"学院珊瑚研究员和研究作者EloraLópez-Nandam博士说。"令人惊讶的是,我们发现,在2019年产卵的四个繁殖地点中,只有两个殖地点在23个后代中养育了22个后代,这些后代都能活到2岁。这给我们带来了很多新的问题,让我们去探索这两个亲本是如何如此成功的,其答案可以帮助我们更好地了解珊瑚的更广泛的繁殖。"López-Nandam说:"虽然成功的珊瑚产卵事件证明了我们能够多么密切地模仿自然的海洋条件,但不可避免的是,在水族馆环境中存在着与野生环境不同的环境压力,并可能在每一代珊瑚中选择某些性状。因此,除了亲缘关系,研究人员还筛选了所有4.5亿个DNA碱基对--如果一个生物体的基因组是一本书,那么碱基对就是各个字母--从每个采样的珊瑚中找出连续几代之间的遗传差异。"在学院的珊瑚产卵活动中收集的配子特别是,研究人员在长达4.5亿个字母的代码中发现了887个点,与那些在野外出生的珊瑚相比,水族馆饲养的珊瑚似乎有所不同。López-Nandam说:"我们发现的许多差异是与光合藻类共生有关的基因途径,这是许多珊瑚获得其大部分能量的方式。我们希望在珊瑚繁殖实验室进行未来的研究,以确定究竟是什么从水族馆环境中驱动这些差异,以及这些基因变异如何影响水族馆培育的珊瑚的整体健康或健康。"正如养育一个孩子需要一个家庭一样,研究作者指出,为这样的研究养育珊瑚需要一支独特的专家队伍:从库斯库斯大小的配子束到阿司匹林大小的珊瑚虫再到葡萄柚大小的产卵成虫。斯坦哈特水族馆生物学家和研究作者LisaLarkin说:"水族馆生物学家和科学研究人员之间的这种合作很罕见。世界上很少有地方能把所有这些专家安置在同一栋楼里,共同为一个共同的目标而努力。学院的独特之处在于,我们可以推动这种研究的发展,同时也对珊瑚保护产生重大影响。"Larkin和她在斯坦哈特水族馆的同事们花了几个月的时间来监测水质和跟踪珊瑚的发展,以确保它们每年都有足够的健康状态来产卵。"珊瑚可能是相当挑剔的。它们需要大量的能量来繁殖,如果它们有压力,它们会把这些能量放在其他地方,"Larkin说。"这需要几个月的详细关注,以使它们达到准备好并能够产卵的程度。"但是,Larkin补充说,最终的结果足以证明这种努力是值得的。"你照顾了一整年的珊瑚,当它们最终产卵时,你知道你已经完成了一个项伟大的工作。而且,由于每次产卵都会带来新的研究机会,如适用于珊瑚保护的研究,回报是非常值得的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1332765.htm手机版:https://m.cnbeta.com.tw/view/1332765.htm

封面图片

科学家发现存在一种2017年首次预测的难以捉摸的超导态

科学家发现存在一种2017年首次预测的难以捉摸的超导态这是荷兰格罗宁根大学复杂材料设备物理学组组长、《自然》杂志有关FFLO超导态论文的第一作者叶毅教授、博士。图片来源:SylviaGermes该论文的第一作者是格罗宁根大学复杂材料设备物理学组组长叶毅教授。叶教授和他的团队一直在研究伊辛超导态。这是一种特殊的状态,可以抵抗通常会破坏超导性的磁场,该团队在2015年对其进行了描述。2019年,他们创造了一种由双层二硫化钼组成的装置,可以将驻留在两层中的伊辛超导态耦合在一起。有趣的是,Ye和他的团队创造的装置可以利用电场打开或关闭这种保护,从而形成一个超导晶体管。耦合伊辛超导体装置揭示了超导领域一个长期存在的难题。1964年,四位科学家(富尔德、费雷尔、拉尔金和奥夫钦尼科夫)预言了一种在低温和强磁场条件下可能存在的特殊超导状态,即FFLO状态。在标准超导电性中,电子作为库珀对以相反的方向运动。由于它们以相同的速度运动,这些电子的总动量为零。然而,在FFLO状态中,库珀对中的电子之间存在微小的速度差,这意味着存在净动量。叶毅教授介绍说:"这种状态非常难以捉摸,只有少数文章声称它存在于普通超导体中。"然而,这些文章都不是结论性的。这个相图描述了六折各向异性轨道FFLO状态的存在,它占据了相图的很大一部分。右上角的示意图展示了超导阶参数的空间调制。资料来源:P.Wan/格罗宁根大学要在传统超导体中产生FFLO状态,需要一个强磁场。但磁场的作用需要仔细调整。简单地说,要让磁场发挥两种作用,我们需要利用泽曼效应。这可以根据自旋方向(磁矩)来分离库珀对中的电子,而不是轨道效应--通常会破坏超导性的另一种作用。"这就像超导性与外部磁场之间的微妙谈判。"第一作者PuhuaWan制作的样品满足了证明库珀对中确实存在有限动量的所有要求。资料来源:P.Wan/格罗宁根大学叶和他的合作者于2015年在《科学》(Science)杂志上介绍并发表的伊辛超导抑制了泽曼效应。他说:"通过过滤掉使传统FFLO成为可能的关键成分,我们为磁场发挥其另一个作用(即轨道效应)提供了充足的空间。我们在论文中展示的是轨道效应驱动的FFLO状态在我们的伊辛超导体中的清晰指纹,这是一种非常规的FFLO态,2017年首次在理论上被描述。"传统超导体中的FFLO态需要极低的温度和极强的磁场,因此很难产生。然而,在叶教授的伊辛超导体中,只需较弱的磁场和较高的温度就能达到这种状态。事实上,2019年,研究人员首次在他的二硫化钼超导装置中观察到FFLO状态的迹象:"当时我们无法证明这一点,因为样品不够好。不过,他的博士生万普华后来成功制作出了符合所有要求的材料样品,证明库珀对中确实存在有限动量。实际实验花了半年时间,但对实验结果的分析又花了一年时间。"这种新的超导状态还需要进一步研究。还有很多东西需要了解。例如,动量如何影响物理参数?研究这种状态将为超导提供新的见解。这或许能让我们在晶体管等设备中控制这种状态。这是物理学家们的下一个挑战。...PC版:https://www.cnbeta.com.tw/articles/soft/1372531.htm手机版:https://m.cnbeta.com.tw/view/1372531.htm

封面图片

研究证实普通化肥化合物可将促成自然铀释放到地下水中

研究证实普通化肥化合物可将促成自然铀释放到地下水中铀浓度超过环保局的阈值已被证明会对人类造成肾脏损害,特别是当经常通过饮用水摄入人体时。硝酸盐是无机化合物,在各种生物过程中发挥着重要作用,包括植物的生长和繁殖以及动物的血压调节。它们通常被用作农业的肥料,但也可以在食物和水源中发现。"大多数内布拉斯加人依赖地下水作为饮用水,"生物科学学院和地球与大气科学系副教授韦伯说。"在林肯,我们依赖它。很多农村社区,他们更是依靠地下水。因此,当你摄入高浓度的(铀)时,这就成为一个潜在的问题。"内布拉斯加的KarrieWeber(最右边)指导其他Husker研究人员如何测试内布拉斯加Alda附近地下水中的铀含量。该团队通过实验证实,硝酸盐是肥料和动物粪便中常见的一种化合物,可以帮助将天然存在的铀从地下输送到地下水。资料来源:道格尔蒂全球食品水研究所研究已经确定,溶解的无机碳可以通过化学方式从地下沉积物中分离出微量的天然、非放射性的铀,最终使其运输到地下水中。但是,2015年的研究发现,高平原含水层的某些地区的铀含量高达89倍于美国环保署的阈值,这使韦伯相信,硝酸盐也在发挥作用。因此,在12位同事的帮助下,韦伯开始测试这一假设。为此,该小组从内布拉斯加州阿尔达附近的一个含水层地点提取了两个圆柱形的沉积物核心--每个大约2英寸宽,深60英尺。研究人员知道,该地点不仅含有天然的铀痕迹,而且还允许地下水向东流入邻近的普拉特河。他们的目标是在沉积物样本中重现这种流动,然后确定在水中加入一些硝酸盐是否会增加随水带走的铀的数量。"我们想要确保的事情之一是,当我们收集样本时,我们没有改变铀或沉积物或(微生物)群落的状态,"韦伯说。"我们做了一切我们能做的事情来保护自然条件"。"一切"意味着对提取的岩心立即进行加盖和蜡封,将它们滑入密闭管中,用氩气冲洗这些管子以驱除任何氧气,并将它们放在冰上。回到实验室后,韦伯和她的同事最终将从两个岩心中各取出15英寸的部分。这些片段由沙子和淤泥组成,其中的铀含量相对较高。随后,研究小组将用这些淤泥填充多个柱子,然后以大致相同的地下水流速将模拟地下水泵入其中。在某些情况下,这些水不包含任何额外内容。在其他情况下,研究人员加入了硝酸盐。而在其他情况下,他们同时添加了硝酸盐和一种抑制剂,旨在阻止生活在沉积物中的微生物的生化活动。含有硝酸盐但缺乏微生物抑制剂的水成功地带走了大约85%的铀--相比之下,当水没有硝酸盐时,只有55%,当水含有硝酸盐但也含有抑制剂时,只有60%。这些结果表明,硝酸盐和微生物都在进一步调动铀。他们还支持这样的假设:由微生物引发的一系列生物化学事件正在将原本是固体的铀转化为可以轻易溶解于水的形式。首先,生活在沉积物中的细菌向硝酸盐捐赠电子,催化其转变为一种叫做亚硝酸盐的化合物。然后,亚硝酸盐会氧化--从邻近的铀中窃取电子,最终将其从固体矿物变成水态矿物,准备在渗过淤泥的涓涓细流中移动。在分析了其沉积物样本中存在的DNA序列后,该团队确定了能够将硝酸盐代谢为亚硝酸盐的多种微生物物种。尽管这种铀动员的生物化学作用已经被认为是在高度污染的地区--铀矿、核废料处理的地方展开的,但新的研究是第一次确定同样的动员过程也发生在天然沉积物中。Weber在谈到硝酸盐和铀时说:"当我们第一次得到这个项目的资助时,我们正在考虑这个问题,它是作为一种主要污染物导致二次污染。这项研究确认了这可能发生。"尽管如此,正如韦伯所说,"硝酸盐并不总是一件坏事"。她以前的研究和一些即将进行的研究都表明,只有当硝酸盐接近其自身的EPA阈值(百万分之十)时,才会调动铀。...PC版:https://www.cnbeta.com.tw/articles/soft/1352471.htm手机版:https://m.cnbeta.com.tw/view/1352471.htm

封面图片

达尔文的珊瑚礁悖论已解 科学家揭开珊瑚在贫瘠水域获取营养物质的谜团

达尔文的珊瑚礁悖论已解科学家揭开珊瑚在贫瘠水域获取营养物质的谜团南安普顿大学的一项研究揭示,珊瑚以生活在其细胞内的微小藻类为食,从而获得了以前认为无法获得的营养源。这一发现解答了一个被称为"达尔文珊瑚礁悖论"的长期谜团,解释了珊瑚如何在缺乏营养的水域中繁衍生息。领导这项研究的南安普顿大学珊瑚礁实验室主任约尔格-维登曼(JörgWiedenmann)教授评论说:达尔文的珊瑚礁悖论"是关于为什么珊瑚礁会在营养物质匮乏的海洋中生长的问题,它启发人们发现了有助于解释这一现象的几个重要过程。我们现在可以为这一谜题增添缺失的部分,帮助解开这个长期存在的谜团"。珊瑚礁为许多生物提供家园和觅食地。图片来源:Wiedenmann/D'Angelo/南安普顿大学他介绍说,查尔斯-达尔文(CharlesDarwin)乘坐"小猎犬号"(HMSBeagle)起航时,他认为自己是一名地质学家,在热带海洋航行期间,他很快对珊瑚礁的形成地点和原因产生了兴趣。达尔文正确地预测了地壳下沉和珊瑚稳步向上生长是如何相互作用形成巨大珊瑚礁结构的。然而,这种蓬勃生长背后的生物机制仍未得到研究"。石珊瑚是一种软体生物,有些人可能觉得它们像植物,但实际上它们是动物。这些生物由许多单独的珊瑚虫组成,它们聚居在一起,秘密地形成石灰岩骨架,形成我们所知的'珊瑚礁'三维框架。珊瑚礁是重要的水下生态系统,造福于许多人类社区。珊瑚礁是无数生物的家园和觅食地,维持着全球海洋生物多样性的25%。它们为地球上大约5亿人提供食物和收入。珊瑚礁上的单细胞共生藻,显示其通过细胞分裂生长。图片来源:Wiedenmann/D'Angelo/南安普顿大学珊瑚动物依赖于一种"共生"关系,即与生活在其细胞内的微小藻类之间的互利关系。光合藻类产生大量富碳化合物(如糖),并将其转移到宿主珊瑚体内以产生能量。共生藻还能非常有效地从海水中吸收硝酸盐和磷酸盐等溶解的无机营养物质。即使在缺乏营养的海洋中,这些化合物也可以作为生活在附近的海绵等生物的排泄物而大量存在。它们还可以通过洋流转移到珊瑚礁上。与它们的共生体不同,珊瑚的宿主不能直接吸收或利用溶解的无机营养物质,直到现在,人们还不清楚这些营养物质是如何促进珊瑚生长的。不过,南安普顿大学的科学家与英国兰卡斯特大学、特拉维夫大学和以色列耶路撒冷大学等合作团队一起,已经确定了这些必要的生长营养物质转移到珊瑚动物体内的机制。他们的研究成果发表在《自然》杂志上。南安普顿大学珊瑚礁实验室的实验水族箱。图片来源:Wiedenmann/D'Angelo/南安普顿大学通过在南安普顿大学珊瑚礁实验室进行一系列长期实验,科学家们证明,珊瑚实际上消化了部分共生藻群,以获取共生藻从水中吸收的氮和磷。如果水中有足够的溶解无机营养物质,即使珊瑚没有获得额外的食物,这种机制也能让它们快速生长。在印度洋偏远珊瑚礁环礁的实地考察结果支持了实验室的研究成果,证明这种机制在生态系统层面上促进了野生珊瑚的生长。南安普顿珊瑚生物学副教授、主要作者之一塞西莉亚-达安杰洛博士评论说:"多年来,我们一直在实验水族箱系统中繁殖共生珊瑚,我们观察到,即使不喂食,它们也能生长得很好。根据目前的知识水平,我们无法解释共生双方是如何交换养分的,因此我们认为我们缺少了重要的一环,并开始系统地分析这一过程"。海鸟为印度洋的珊瑚礁引入营养物质。图片来源:兰卡斯特大学尼克-格雷厄姆(NickGraham珊瑚礁实验室的研究员洛雷托-马多内斯-韦洛佐博士(LoretoMardones-Velozo)进行了关键的实验,他补充说:"我们可以预料到,动物会死亡或在珊瑚礁中发现营养物质,人们会认为,如果不吃东西,动物就会死亡或停止生长。然而,如果我们把珊瑚放在溶解无机营养物质水平较高的水中,它们看起来非常快乐,而且生长迅速。"研究人员使用一种特殊标记的化合物来追踪共生伙伴之间必需营养元素氮的移动。实验中使用的化学形式的氮只能被共生体整合到它们的细胞中,而不能被珊瑚宿主整合到细胞中。南安普顿大学稳定同位素质谱实验室经理巴斯蒂安-汉巴赫(BastianHambach)解释说:"我们利用同位素标记技术,在提供给珊瑚的营养物质中'添加'比正常重的氮原子。这些同位素使我们能够利用超灵敏检测方法追踪珊瑚对营养物质的使用情况。"CeciliaD'Angelo博士在南安普顿大学珊瑚礁实验室繁殖珊瑚。图片来源:Wiedenmann/D'Angelo/南安普顿大学南安普顿大学古海洋学家保罗-威尔逊(PaulWilson)教授解释说:"通过这项技术,我们可以明确地证明,维持珊瑚组织生长的氮原子来自于实验中喂给其共生体的溶解无机营养物质"。南安普顿大学的约尔格-维登曼(JörgWiedenmann)教授补充说:"我们使用了10种不同的珊瑚物种来量化共生体种群是如何随宿主一起增长的。利用共生体生长的数学模型,我们可以证明珊瑚消化了其共生体种群的多余部分,为其生长获取营养。我们的数据表明,大多数共生珊瑚可以通过这种'素食'来补充营养"。科学家们还对生长在印度洋岛屿周围的珊瑚进行了分析,一些珊瑚上有海鸟,一些则没有,结果表明珊瑚有可能在野外养殖共生体并以其为食。实验珊瑚Stylophorapistillata的生长。图片来源:Mardones-Velozo/D'Angelo/Wiedenmann/南安普顿大学兰卡斯特大学海洋生态学家尼克-格雷厄姆(NickGraham)教授解释说:"其中一些岛屿周围的珊瑚礁有大量的养分,这些养分来自鸟粪,即在岛上筑巢的海鸟的排泄物。在其他一些岛屿上,海鸟的繁殖地已经被入侵的老鼠消灭殆尽。因此,相关珊瑚礁获得的养分也减少了。我们测量了有密集海鸟群和没有密集海鸟群的岛屿周围鹿角珊瑚群的生长情况,发现在有海鸟提供养分的珊瑚礁上,鹿角珊瑚的生长速度要快两倍多。我们计算出,在有海鸟栖息的岛屿上,珊瑚动物组织中约有一半的氮分子可以追溯到共生体的吸收以及随后向宿主的转移"。科学家监测印度洋珊瑚礁上的珊瑚生长情况,研究海鸟营养物质的影响。资料来源:兰卡斯特大学,尼克-格雷厄姆通常由人类活动造成的过度营养富集会损害珊瑚,并对许多珊瑚礁构成日益严重的威胁。然而,由于全球变暖可能会切断珊瑚礁的一些天然供应路线,未来一些珊瑚礁获得的养分可能会减少。南安普顿大学的D'Angelo博士解释说:"变暖的表层水更不可能从深水层获得养分。水体生产力的降低会导致共生体的营养物质减少,进而导致珊瑚动物的食物减少"。科学家们的新发现表明,虽然珊瑚动物可以通过捕食其共生体来忍受短暂的饥饿,但在某些地区,由于全球变暖带来的更长时间的营养物质枯竭,一些珊瑚礁可能会面临饥饿的风险。...PC版:https://www.cnbeta.com.tw/articles/soft/1379619.htm手机版:https://m.cnbeta.com.tw/view/1379619.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人