科学家利用硼自由基将溶液中的氮转化为氨

科学家利用硼自由基将溶液中的氮转化为氨氮气占我们呼吸的空气的77%,因此在理论上,它几乎可以无限地用于合成氨。然而,在实践中,它只与其他元素发生极其缓慢的反应。在100多年前开发的哈伯-博世工艺中,金属催化剂加速了这种迟缓的反应。它们激活了氮气,然后在高压和高温下与氢气反应,得到氨气。温和的氨气合成氨在工业上用于生产硝酸盐化肥。当氢气被用作能源时,它也可以被用作氢气储存。迄今为止,用于固氮的微生物方法一直是为哈伯-波什工艺提出的主要的温和替代方法。然而,利用细菌进行生物技术氨的生产仍然是相当低效的。由法国图卢兹的保罗-萨巴蒂埃大学(UniversitéPaulSabatier,CNRS)的NicolasMézailles领导的一个研究小组现在发现,活性硼化合物可以非常有效地瞄准和激活分子氮。该团队解释了他们最初的想法。"我们推断,使用高能自由基可能为氮的功能化提供一个动力学和热力学上的有利途径"。研究小组的理论计算随后强调了以硼为中心的自由基是合适的候选。研究人员通过向有机卤化硼添加强还原剂来产生这些硼心自由基,由此产生的物质在室温下将分子氮转化为硼胺,而硼胺又与水酸反应,得到氯化铵。Mézailles和该团队现在描述了一种利用自由基化合物在溶液中固氮的新方法。研究人员观察到,他们产生的以硼为中心的自由基有效地分解了分子氮中稳定的三键,使得在温和条件下使分子氮功能化成为可能。这种基于自由基的方法为氨的生产开辟了进一步的可能性,而不需要依赖化石原料。...PC版:https://www.cnbeta.com.tw/articles/soft/1336797.htm手机版:https://m.cnbeta.com.tw/view/1336797.htm

相关推荐

封面图片

科学家开发出更便宜、更清洁、更环保的氨生产新方法

科学家开发出更便宜、更清洁、更环保的氨生产新方法这幅图画展示了以锂为媒介将N2转化为氨的过程。图中是在电沉积锂(黑色瓷砖)上发生的一系列反应。在高压下,氮气(添加蓝色块)在锂上发生化学吸附,随后质子化(添加白色块)形成NHx,最终生成氨气并回收锂。这一循环过程形成了产生氨的催化节奏。这项研究强调了压力和电位在控制固体电解质界面的结构和稳定性以实现氨合成方面的重要性。资料来源:CrystalPrice和JosephGauthier,德克萨斯理工大学;MeeneshSingh,伊利诺伊大学芝加哥分校这一过程被称为锂介导的氨合成,它将氮气和乙醇等供氢流体与带电的锂电极结合在一起。氮原子不会在高温高压下分解氮气分子,而是粘附在锂上,然后与氢结合生成氨分子。该反应可在低温下进行,而且具有再生性,每生产一轮氨,就能恢复原来的材料。"有两个循环会发生。一个是氢源的再生,第二个是锂的再生,"UIC化学工程副教授辛格说。"由于循环过程的存在,这一反应中充满了交响乐。我们所做的就是以一种更好的方式来理解这种交响乐,并尝试以一种非常有效的方式来调节它,这样我们就能产生共振,使其更快地进行。"辛格实验室在《ACS应用材料与界面》(ACSAppliedMaterials&Interfaces)杂志封面上发表的一篇论文介绍了这一工艺,这是辛格实验室在寻求更清洁的氨方面的最新创新。在此之前,他的研究小组开发出了利用阳光和废水合成这种化学物质的方法,并制造出了一种电气化铜网筛,减少了制造氨气所需的能量。他们的最新研究成果建立在一种并不新奇的反应之上。科学家们对它的了解已有近一个世纪。"基于锂的方法实际上可以在任何有机化学教科书中找到。这是众所周知的。"辛格说。"但是,让这种循环高效、有选择性地运行,从而达到经济上可行的目标,这是我们的贡献"。这些目标包括高能效和低成本。辛格表示,如果规模扩大,该工艺生产氨的成本约为每吨450美元,比以前的锂基方法和其他拟议的绿色方法便宜60%。但是,选择性也很重要,因为许多使氨生产更清洁的尝试最终都产生了大量无用的氢气。辛格小组的研究成果是首批在选择性和能源使用方面达到能源部氨工业化生产标准的成果之一。辛格还表示,该工艺可以在模块化反应器中进行,通过太阳能电池板或其他可再生能源供电,并用空气和水为反应提供原料,可以使该工艺更加绿色环保。该工艺还有助于实现另一个能源目标--将氢用作燃料。实现这一目标一直受制于运输高可燃性液体的困难。"产生氢气、运输氢气并将氢气输送到氢气泵站,然后将氢气输送到汽车,这非常危险,"辛格说。"氨可以作为氢的载体。它的运输成本很低,而且很安全,在目的地可以把氨转化回氢。"目前,科学家们正与通用氨公司(GeneralAmmoniaCo.UIC)的技术管理办公室已为该工艺申请了专利。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426105.htm手机版:https://m.cnbeta.com.tw/view/1426105.htm

封面图片

新型光催化硼酸化方法变革合成化学转化产物的方式

新型光催化硼酸化方法变革合成化学转化产物的方式一个突破性的研究团队推出了一种利用NHC-BH3进行硼酸化反应的高效、可回收光催化系统,有助于在温和条件下进行可持续的高价值化学合成。资料来源:DICPNHC-BH3在自由基硼化反应中的优势NHC-BH3化学性质稳定,制备方法简单,是自由基硼化反应中的新型硼源。然而,由于需要大量有害的自由基引发剂以及昂贵且不可回收的均相光催化剂,NHC-BH3的应用受到了阻碍。在这项研究中,研究人员利用易于制备的硫化镉纳米片作为异相光催化剂。它们以NHC-BH3为硼源,可在室温和光照条件下对各种烯烃、炔烃、亚胺、芳香(杂)环和生物活性分子进行选择性硼化反应。由于转换过程充分利用了光生电子-空穴对,因此无需使用牺牲剂(通过自身损耗来减少其他化学剂损耗的廉价化学剂,且本身不与其他药剂起作用)。新系统的可扩展性和可回收性此外,他们还发现,这种光催化系统不仅可以实现克级放大,而且在催化剂多次循环后仍能保持稳定的产量。它还可以作为一个可回收的通用平台,使回收的催化剂能够继续催化不同种类的底物。戴教授说:"我们的研究为开发以NHC-BH3为硼源的自由基硼化反应提供了新思路,反应得到的有机硼烷可用于合成含有羟基、硼酸盐和二氟硼烷反应位点的合成构筑物。"...PC版:https://www.cnbeta.com.tw/articles/soft/1400819.htm手机版:https://m.cnbeta.com.tw/view/1400819.htm

封面图片

绿色化学技术新突破 研究人员将氨转化为可持续氮源

绿色化学技术新突破研究人员将氨转化为可持续氮源通过主族元素化合物对氨进行可逆活化和催化转移。资料来源:弗兰克-布雷赫,德国工业技术大学胺是农用和医药化学品以及洗涤剂、染料、润滑剂和涂料的基本成分。此外,还可用作生产聚氨酯的催化剂。胺还可用于炼油厂和发电厂的气体洗涤器。通过破坏氮和氢之间的强键(即活化),氨分子至少在理论上可以转移到其他分子上,如不饱和碳氢化合物。例如,将氨转移到化学工业中的重要物质乙烯上就会产生乙胺。化学家将这种加成称为氢化反应。然而,氨和乙烯之间不易发生反应。反应的发生需要催化剂。然而,基于过渡金属的传统催化剂会与氨发生反应而失去活性。"因此,非活化烯烃与氨的氢化反应被认为是催化领域的一大挑战与目标,"KIT无机化学研究所分子化学部研究小组负责人FrankBreher教授说。氨的活化和催化转移通过与帕德博恩大学(PaderbornUniversity)和马德里康普顿斯大学(ComplutenseUniversityofMadrid)的研究人员合作,无机化学研究所的弗兰克-布雷赫(FrankBreher)教授和费利克斯-克雷默(FelixKrämer)博士现在距离实现这一具有挑战性的目标又近了一步。"我们已经开发出一种氨的活化系统,它不是基于过渡金属,而是基于主族元素。活化和随后转移氨的"原子经济"过程不会产生任何废物,这在可持续发展方面具有特别意义,"布雷赫说。相关研究成果现已发表在《自然-化学》杂志上。研究小组制备出了一种所谓的受挫路易斯对(FLP),它由作为电子对受体的酸和作为电子对供体的碱组成。通常情况下,两者会相互反应并产生加合物。如果阻止或至少限制加合物的形成,就会产生受挫情况,分子很容易与氨等小分子发生反应。"关键是要抑制反应性,使其与小分子的反应是可逆的。只有这样,才有可能在催化中使用这种FLP。我们是第一个用氨作为底物实现这一点的人,"Breher报告说。研究发现,FLP很容易以热中性方式与非水氨发生反应,并在室温下可逆地拆分氨的氮氢键。研究人员首次展示了基于主族元素的催化剂催化的NH3转移反应。"迄今为止,我们只转化了活化底物,没有转化不饱和碳氢化合物。但我们已经更接近我们梦想中的反应了,"布雷赫说。"我们预计,我们的首次原理验证将启动进一步的工作,将N-H活化氨用作一种易于获得且可持续的氮源。"参考文献FelixKrämer、JanParadies、IsraelFernández和FrankBreher于2023年9月28日发表在《自然-化学》上的文章:"一种能够在非水介质中活化和催化氨转移的结晶铝碳基双亲化合物"。DOI:10.1038/s41557-023-01340-9编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403155.htm手机版:https://m.cnbeta.com.tw/view/1403155.htm

封面图片

科学家揭开尿素在生命起源中的秘密角色

科学家揭开尿素在生命起源中的秘密角色研究人员开发出一种观察液体中化学反应的新方法,揭示了涉及尿素等分子的反应,这些分子可能促成了地球生命的出现。这项技术涉及一种能产生细小液体射流的特殊仪器和X射线光谱学,使科学家们能够研究在短短飞秒内发生的反应。这一突破是在苏黎世联邦理工学院物理化学教授汉斯-雅各布-沃纳(HansJakobWörner)领导的同一研究小组先前研究的基础上取得的。这项工作针对在气体环境中发生的反应得出了类似的结果。为了将X射线光谱观测扩展到液体,研究人员必须设计一种仪器,能够在真空中产生直径小于一微米的液体射流。这一点至关重要,因为如果射流再宽一些,就会吸收部分用于测量的X射线。利用这种新方法,研究人员得以深入了解地球上生命出现的过程。许多科学家认为,尿素在其中发挥了关键作用。尿素是含有碳和氮的最简单分子之一。更重要的是,尿素极有可能在地球非常年轻的时候就已经存在,20世纪50年代的一项著名实验也表明了这一点:美国科学家斯坦利-米勒(StanleyMiller)调制了一种据信构成地球原始大气层的气体混合物,并将其暴露在雷暴条件下。这产生了一系列分子,其中之一就是尿素。根据目前的理论,尿素可能已经富集在当时没有生命的地球上的温暖水坑中--通常称为原始汤。随着汤中水分的蒸发,尿素的浓度也随之增加。在宇宙射线等电离辐射的作用下,这些浓缩的尿素有可能经过多个合成步骤产生丙二酸。反过来,这可能产生了RNA和DNA的组成元素。苏黎世联邦理工学院和日内瓦大学的研究人员利用他们的新方法,研究了这一长串化学反应的第一步,以找出浓缩尿素溶液在电离辐射下的表现。要知道,浓尿素溶液中的尿素分子会自行成对,即所谓的二聚体。研究人员现在已经能够证明,电离辐射会导致每个二聚体中的一个氢原子从一个尿素分子移动到另一个。这样,一个脲分子就变成了质子化的脲分子,而另一个脲分子则变成了脲自由基。后者具有很高的化学反应活性--事实上,它的反应活性非常高,很有可能与其他分子发生反应,从而形成丙二酸。研究人员还设法证明,氢原子的这种转移发生得非常快,大约只需要150飞秒,即150四十亿分之一秒。Wörner说:"这个反应速度如此之快,以至于理论上可能发生的所有其他反应都会被这个反应所取代。这就解释了为什么浓缩尿素溶液会产生尿素自由基,而不是承载会产生其他分子的其他反应。"Wörner和他的同事们希望研究导致丙二酸形成的下一个步骤,希望这将有助于他们了解地球生命的起源。至于他们的新方法,一般也可用于研究液体中化学反应的精确顺序。"一系列重要的化学反应都发生在液体中,不仅包括人体中的所有生化过程,还包括与工业相关的大量化学合成,"沃纳说。"这就是为什么我们现在扩大了高时间分辨率X射线光谱的范围,将液体中的反应也包括在内,这一点非常重要"。...PC版:https://www.cnbeta.com.tw/articles/soft/1382767.htm手机版:https://m.cnbeta.com.tw/view/1382767.htm

封面图片

科学家成功在溶液中产生慢速电子

科学家成功在溶液中产生慢速电子在这里,两个电子短暂地结合成一个被溶剂分子包围的电子(红色)。该电子无法更精确地定位。其中一个电子随后将离开这一区域。资料来源:HartwegS等人,《科学2023》苏黎世联邦理工学院教授露丝-西格诺雷尔(RuthSignorell)领导的研究人员在对介电子进行实验时,意外地发现了一种产生慢速电子的新工艺。这些电子可用于引发某些化学反应。压电子是不稳定的。它们会在不到万亿分之一秒的时间内再次分裂成两个电子。研究人员能够证明,其中一个电子保持原位,而另一个电子--能量低,因此速度相对较慢--则移动开来。这种新方法的特别之处在于,它允许研究人员控制这种电子的动能,从而控制其速度。压电子占据空腔首先:为了产生电子,研究人员将钠溶解在(液态)氨中,并将溶液暴露在紫外线下。紫外线照射会使氨分子中的电子与钠原子中的电子结合,从而形成一个介子。该电子短暂占据溶液中的一个微小空腔。研究人员设法证明,当该电子破裂时,其中一个电子会以所使用的紫外线波长决定的速度移动。Signorell说:"紫外光的部分能量已经转移到了电子上。"苏黎世联邦理工学院的研究人员与德国弗莱堡大学、法国SOLEIL同步加速器和美国奥本大学的研究人员合作完成了这项工作。检查反应和辐射损伤由于多种原因,这种低动能电子非常有趣。其一是慢速电子会对人体组织造成辐射损伤。例如,X射线或放射性会在人体组织中形成移动电子。然后它们会附着在DNA分子上并引发化学反应。在实验室中更容易产生这种慢速电子将有助于研究人员更好地研究导致辐射损伤的机制。但人体并不是化合物接受自由电子后引发化学反应的唯一场所。合成可的松和其他类固醇的生产就是一个例子。利用紫外光这种相对简单的方法直接在溶液中产生慢速电子,并控制电子的能量,将使将来更好地研究这些反应变得更加容易。化学家甚至有可能对反应进行优化,例如利用紫外光增加电子的动能。...PC版:https://www.cnbeta.com.tw/articles/soft/1371621.htm手机版:https://m.cnbeta.com.tw/view/1371621.htm

封面图片

科学家们发现了一种能将空气转化为电能的酶

科学家们发现了一种能将空气转化为电能的酶这一发现是由RhysGrinter博士领导的科学家团队、博士生AshleighKropp和澳大利亚墨尔本莫纳什大学生物医学发现研究所的ChrisGreening教授共同完成。该团队生产并研究了一种源自土壤中常见的细菌的耗氢酶。该团队最近的工作表明,许多细菌在营养不良的环境中使用大气中的氢气作为能量来源。"Grinter教授说:"我们知道细菌可以利用空气中的微量氢气作为能量来源来帮助它们生长和生存,包括在南极的土壤、火山口和深海中,已经有一段时间了。但是我们不知道它们是如何做到这一点的,直到现在。"在这篇《自然》杂志的论文中,研究人员从一种叫做烟曲霉菌的细菌中提取了负责使用大气氢气的酶。他们表明,这种名为Huc的酶将氢气变成了电流。Grinter博士指出:"Huc的效率特别高。与所有其他已知的酶和化学催化剂不同,它甚至可以消耗低于大气水平的氢气--只占我们呼吸的空气的0.00005%"。研究人员使用了几种尖端的方法来揭示大气中氢气氧化的分子蓝图。他们使用先进的显微镜(低温电镜)来确定其原子结构和电通路,从而突破了界限,产生了迄今为止用这种方法报告的分辨率最高的酶结构。他们还使用了一种叫做电化学的技术来证明纯化的酶在微小的氢气浓度下产生电力。实验室工作表明,有可能长期储存纯化的Huc。"它的稳定性令人吃惊。Kropp说:"可以将这种酶冷冻起来,或将其加热到80摄氏度,它仍能保持其产生能量的能力。这反映出这种酶帮助细菌在最极端的环境中生存"。Huc是一种"天然电池",可以从空气或添加的氢气中产生持续的电流。虽然这项研究还处于早期阶段,但Huc的发现对开发小型空气动力设备具有相当大的潜力,例如作为太阳能动力设备的替代品。产生像Huc这样的酶的细菌很常见,而且可以大量种植,这意味着我们可以获得这种酶的可持续来源未来工作的一个关键目标是扩大Huc的生产规模。一旦生产出足够数量的Huc,使用它来生产清洁能源的天空就是相当高的极限。...PC版:https://www.cnbeta.com.tw/articles/soft/1348607.htm手机版:https://m.cnbeta.com.tw/view/1348607.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人