研究:气动“人造肌肉”可由3D打印机制造

研究:气动“人造肌肉”可由3D打印机制造我们已经听到了很多关于“人造肌肉”的消息,它使机器人设备或假肢能够完成类似人类的动作。虽然它们大多是在实验室里利用高科技材料制造的,但一种新的类型可以由业余爱好者使用3D打印机制造。被称为基于几何结构来收缩和伸长的驱动器(GRACE)的气动执行系统是由意大利技术研究院(IIT)和圣安娜高等研究学院(SSSA)的科学家们设计的。每个致动器采用柔性中空塑料灯泡的形式,其两侧有褶皱。当空气通过连接的软管泵入执行器时,它会纵向收缩,同时径向膨胀——换句话说,它会变得更短更胖。另一方面,当空气被抽出时,执行器变得更长更薄。因此,如果将其纳入机器人手指(作为一个例子),当空气被泵入时,推杆可以将手指拉近,而当空气被抽走时,推杆可以将其伸直。根据预期的应用,推杆可以被制成各种形状和尺寸,各种外壳厚度,由各种类型的塑料制成。除其他事项外,这些变量有助于确定单个推杆的膨胀和收缩程度,它在这样做时的移动方向,以及激活它需要多大的气压。在该技术的演示中,由SSSA博士生CorradoDePascali领导的团队创造了一个真人大小的机器人手,其中包括18个GRACE执行器。它完全由软性树脂制成,并在一个单一的3D打印过程中制造。通过抽出或收回“十分之几”的空气,可以使机器人手的手指弯曲或伸直,在手掌处旋转,并在手腕处旋转。整个东西只有大约100克重,尽管其中的每个致动器被设计成可以支持超过其自身重量的1000倍。这项研究在最近发表于《科学机器人》杂志的一篇论文中进行了描述。PC版:https://www.cnbeta.com/articles/soft/1310611.htm手机版:https://m.cnbeta.com/view/1310611.htm

相关推荐

封面图片

研究人员希望使用分布式3D打印机建造大坝

研究人员希望使用分布式3D打印机建造大坝多年来,人们一直在用3D打印技术建造结构,但有一组研究人员希望将AI驱动的建筑带到一个新的规模。如果成功的话,那么它可以比使用人类劳动力更快、更便宜地建造大坝。来自北京清华大学的研究人员最近公布了使用3D打印方法建造一个近600英尺高的大坝的计划。这可能是有史以来最大的3D打印、AI建造的结构,但这也可能取决于“3D打印”的定义。建筑商已经通过使用大型3D打印机制造混凝土层来建造房屋,从而节省了时间和金钱。去年,一家制造公司在荷兰使用机器人线弧增材制造来3D打印一座金属桥。不过清华大学的提案并不涉及任何此类技术。研究人员希望利用AI驱动的机器人、挖掘机、卡车、推土机、摊铺机和其他车辆组成的军团完成黄河西藏段目前在建的羊曲水电站。通过结合一个自动调度系统,研究人员将该系统称为一个单一的大型3D打印机。没有人类会直接参与到大坝的建设中。人工智能将把项目的3D模型切成几层,然后把每一层按顺序分配给无人机器。AI将自动规划材料收集、驾驶路线和安置。另外,它还可以分析振动以确定建造质量。人类将只开采填充的岩石。除了速度和成本方面的优势外,这些机器可以更好地承受低氧水平等危险、全天候工作且研究人员认为它们更不容易出现人为错误。最明显的缺点是,这样一个庞大的项目通常会造成潜在的工作机会的丧失。该大坝计划于2024年完工,它将为河南省提供近50亿千瓦时的电力。PC版:https://www.cnbeta.com/articles/soft/1310549.htm手机版:https://m.cnbeta.com/view/1310549.htm

封面图片

研究人员设计了一种3D打印的机器人手 可以轻松抓起各类物体

研究人员设计了一种3D打印的机器人手可以轻松抓起各类物体为了解决这个问题,剑桥大学的研究人员创造了一个灵活的、3D打印的机器人手,尽管它的手指不能独立移动,但仍然可以进行一系列复杂的运动。这只机器人手被训练成能够抓住不同的物体,并且能够通过使用放置在其"皮肤"上的传感器所提供的信息来预测它是否会掉落这些物体。这种类型的被动运动使机器人更容易控制,并且比具有完全机动化手指的机器人更节能。研究人员说,他们的适应性设计可用于开发低成本的机器人,这些机器人能够进行更自然的运动,并能学会抓取广泛的物体。这些结果在《高级智能系统》杂志上报告。在自然界中,运动是由大脑和身体之间的相互作用产生的:这使人和动物能够以复杂的方式运动而不消耗不必要的能量。在过去的几年里,由于3D打印技术的进步,软性部件已经开始被整合到机器人设计中,这使得研究人员能够为简单、节能的系统增加复杂性。机器人手只用手腕的动作就能拿起一个桃子大小的物体资料来源:剑桥大学人类的手是高度复杂的,在机器人中重现其所有的灵巧性和适应性是一个巨大的研究挑战。今天的大多数先进机器人都无法完成小孩子可以轻松完成的操纵任务。例如,人类本能地知道在拿起一个鸡蛋时应使用多大的力量,但对机器人来说,这是一个挑战:力量太大,鸡蛋可能会碎掉;力量太小,机器人可能会掉落。此外,一个完全驱动的机器人手,每个手指的每个关节都有电机,需要大量的能量。在剑桥大学工程系的FumiyaIida教授的生物启发机器人实验室,研究人员一直在开发这两个问题的潜在解决方案:一个能够以正确的压力量抓取各种物体的机器人手,同时使用最少的能量。"在早期的实验中,我们的实验室已经表明,仅仅通过移动手腕就有可能在机器人手上获得很大的运动范围,"共同作者托马斯-乔治-图鲁特尔博士说,他现在在伦敦大学学院(UCL)东区工作。"我们想看看基于被动运动的机器人手是否不仅能够抓取物体,而且能够预测它是否会掉落物体,并作出相应的调整。"3D打印的机器手拿筷子研究人员使用了一个植入触觉传感器的3D打印拟人手,以便该手能够感知它所接触的东西。这只手只能够进行被动的、基于手腕的运动。研究小组对这只机器人手进行了1200多次测试,观察其抓取小物体而不掉落的能力。该机器人最初使用3D打印的小塑料球进行训练,并使用通过人类示范获得的预设动作抓取它们。第一作者KieranGilday博士说:"这种手有一点弹簧感:它可以自己拿起东西,而不需要手指的任何驱动。触觉传感器让机器人感觉到抓握的情况如何,因此它知道什么时候开始打滑。这有助于它预测事情何时会失败"。机器人利用试验和错误来学习什么样的抓握方式会成功。在完成对球的训练后,它又尝试抓取不同的物体,包括一个桃子、一个电脑鼠标和一卷气泡膜。在这些测试中,这只手能够成功抓取14个物体中的11个。"传感器,有点像机器人的皮肤,测量施加在物体上的压力,"乔治-图鲁特尔说。"我们不能说机器人到底得到了什么信息,但理论上它可以估计出物体被抓在哪里,用了多少力。""机器人学会了一个特定的运动和一组特定的传感器数据的组合将导致失败,这使得它成为一个可定制的解决方案,"Gilday说。"这只手非常简单,但它可以用同样的策略拿起很多物体。""这种设计的最大优势是我们可以在不使用任何执行器的情况下获得的运动范围,我们希望尽可能地简化手部的工作。我们可以在没有任何执行器的情况下获得大量良好的信息和高度的控制,这样,当我们加入执行器时,我们将在一个更有效的包装中获得更复杂的行为。"一个完全驱动的机器人手除了需要大量的能量外,也是一个复杂的控制问题。剑桥大学设计的手的被动设计,使用少量的传感器,更容易控制,提供广泛的运动范围,并简化了学习过程。在未来,该系统可以通过多种方式进行扩展,如增加计算机视觉功能或教机器人利用其环境,这将使其能够抓取更广泛的物体。...PC版:https://www.cnbeta.com.tw/articles/soft/1354847.htm手机版:https://m.cnbeta.com.tw/view/1354847.htm

封面图片

研究人员打造出可以像虫子一样的飞行3D打印机

研究人员打造出可以像虫子一样的飞行3D打印机3D打印和增材制造似乎是21世纪的金矿,近年来在从珠宝和汽车制造到建筑业的各个领域掀起了波澜。谁会想到像3D打印这样的技术可以与另外两种新兴技术--无人机和人工智能--结合起来并做出真正了不起的东西呢?PC版:https://www.cnbeta.com/articles/soft/1327533.htm手机版:https://m.cnbeta.com/view/1327533.htm

封面图片

科学家用3D打印机“生物打印 ”植物细胞 以研究细胞功能

科学家用3D打印机“生物打印”植物细胞以研究细胞功能一项新研究揭示了一种可重复的方法,通过3D打印机“生物打印”这些细胞来研究不同类型的植物细胞之间的细胞通讯。学习更多关于植物细胞如何相互“沟通”--以及与环境“沟通”--是了解更多关于植物细胞功能的关键。这最终可能导致产生最佳的生长环境和更好的作物品种。PC版:https://www.cnbeta.com/articles/soft/1327333.htm手机版:https://m.cnbeta.com/view/1327333.htm

封面图片

欧空局的金属3D打印机已运抵空间站 将在太空中创造未来

欧空局的金属3D打印机已运抵空间站将在太空中创造未来一台开创性的欧洲制造金属3D打印机已被发射到国际空间站,这标志着金属3D打印将首次在轨道上进行。这一举措利用了欧空局与空中客车公司之间的合作,旨在展示太空制造的潜力。图片来源:空中客车防务与航天公司"金属3D打印是一项更大的技术挑战,涉及到更高的温度和使用激光熔化金属。因此,必须确保机组人员和空间站本身的安全,而维护的可能性也非常有限。不过如果成功,金属的强度、导电性和刚性将把太空3D打印的潜力提升到新的高度。"第一台在国际空间站上运行的金属3D打印机正在进行地面测试,生产欧空局设计的样品部件。这台金属3D打印机由欧空局主导开发,旨在证明金属3D打印可以在失重条件下进行,为未来的太空制造能力开辟道路,让远离地球的宇航员可以生产他们需要的任何工具或备件。图片来源:空中客车防务与航天公司天鹅座NG-20货运飞船搭载着金属3D打印机以及8200磅重的科学调查报告和货物,于2月1日与国际空间站对接。打开包装后,欧空局宇航员安德烈亚斯-莫根森(AndreasMogensen)将准备并将重约180公斤的金属3D打印机安装到欧空局哥伦布舱的欧洲拉架MarkII中。安装完成后,打印机将在地球上进行控制和监测,因此打印工作可以在没有Andreas监督的情况下进行。金属3D打印机技术演示器由空中客车防务与航天公司(AirbusDefenceandSpaceSAS)领导的一个工业团队开发,该团队也是该项目的共同出资方,与欧空局人类和机器人探索局签订了合同。"这次在轨演示是欧空局与空中客车公司充满活力的小型工程师团队密切合作的成果,"空中客车公司项目经理帕特里克-克雷森说。"但这不仅仅是向未来迈出的一步,更是太空探索创新的一次飞跃。它为在太空中制造更复杂的金属结构铺平了道路。这是确保探索月球和火星的关键资产。"资料来源:空中客车公司打印机将使用一种常用于医疗植入物和水处理的不锈钢进行打印,因为这种不锈钢具有良好的耐腐蚀性。不锈钢丝被送入打印区,打印区由高功率激光器加热,其功率是普通激光笔的一百万倍。当金属丝浸入熔池时,金属丝的末端就会熔化,然后金属就会被添加到打印件中。来自欧空局技术、工程和质量部的欧空局材料工程师AdvenitMakaya为该项目提供了技术支持:"打印过程中的熔池非常小,大约只有一毫米宽,这样液态金属的表面张力就能使其在失重状态下牢牢固定。即便如此,不锈钢的熔点约为1400°C,因此打印机是在一个完全密封的盒子里运行的,以防止过多的热量或烟雾进入空间站的乘员舱。在打印过程开始之前,打印机内部的氧气必须排出太空,取而代之的是氮气--如果暴露在氧气中,热不锈钢就会氧化。金属3D打印机将是首次在国际空间站上使用3D打印机进行金属打印。欧空局与空中客车防务与航天公司(AirbusDefenseandSpaceSAS)签订了生产该3D打印机的合同。形状和尺寸科学家们选择了四种有趣的形状来测试金属3D打印机的性能。这些首批物品将与在地面打印的相同形状(称为参考打印件)进行比较,以了解太空环境对打印过程的影响。这四个打印件的尺寸都小于一个苏打罐,每个打印件的重量不到250克,打印时间约为2到4周。由于空间站的噪音规定--打印机的风扇和电机噪音相对较大,计划打印时间被限制在每天四小时。打印完一个形状后,安德烈亚斯将把它从打印机上取下,打包安全运回地球进行处理和分析,以了解太空与地球在打印质量和性能上的差异。作为专用工具的一部分,一个参考和0xg打印件将被送往德国科隆的欧洲宇航员中心(EAC)。另外两份将被送往欧空局的技术中心--欧洲空间研究与技术中心(ESTEC),那里的材料与电子元件实验室团队正在等待样品,以便对打印部件进行宏观和微观分析。最后的打印件将被送往丹麦技术大学(DTU),他们将提出打印件的形状,并研究其热性能,以支持未来的天线排列等工作。为未来做准备罗布补充说:"作为一个技术示范项目,我们的目标是证明金属3D打印在太空中的潜力。我们已经学到了很多,希望能学到更多,使太空制造和装配成为现实。"欧空局未来发展的目标之一是创建循环型太空经济,在轨道上回收材料,以便更好地利用资源。其中一种方法是将旧卫星上的碎片重新利用,制成新的工具或结构。3D打印机可以省去用火箭将工具送上去的麻烦,让宇航员在轨道上就能打印出所需的部件。欧空局机械部主任托马索-吉迪尼(TommasoGhidini)指出:"金属3D太空打印技术是一项前景广阔的能力,不仅能支持未来的探索活动,还能通过原位制造、维修甚至回收太空结构,为更多应用领域的可持续太空活动做出贡献。这包括在轨大型基础设施的制造和组装以及行星上的长期人类定居。这些方面是欧空局即将开展的技术交叉倡议的重点。"欧空局材料与工艺部主管托马斯-罗尔(ThomasRohr)补充说:"这项技术演示展示了微重力环境下金属材料的加工过程,为未来在地球以外制造基础设施铺平了道路。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416087.htm手机版:https://m.cnbeta.com.tw/view/1416087.htm

封面图片

麻省理工学院的3D打印机器人心脏的外观和泵血方式就像真的一样

麻省理工学院的3D打印机器人心脏的外观和泵血方式就像真的一样该团队已经开发出一种程序,可以3D打印出病人心脏的柔软和灵活的复制品。然后他们可以控制该复制品的行动,以模仿该病人的血液泵送能力。该程序包括首先将病人心脏的医学图像转换成一个三维计算机模型,然后研究人员可以使用一种基于聚合物的墨水进行3D打印。其结果是一个柔软、灵活的外壳,与病人自己的心脏形状完全相同,研究小组还可以用这种方法来打印病人的主动脉--将血液从心脏输送到身体其他部位的大动脉。为了模仿心脏的泵送动作,该团队制作了类似于血压袖套的袖子,包裹着打印的心脏和主动脉。每个袖子的底面都类似于精确图案的气泡膜。当套筒连接到一个气动系统时,研究人员可以调整流出的空气,使套筒的气泡有节奏地膨胀,并收缩心脏,模仿其泵送动作。研究人员还可以给一个围绕着打印的主动脉的独立套筒充气,以收缩该血管。他们说,这种收缩可以被调整为模仿主动脉狭窄--一种主动脉瓣变窄的情况,导致心脏更努力地工作以迫使血液通过身体。医生们通常通过手术植入一个合成瓣膜来治疗主动脉狭窄,旨在拓宽主动脉的天然瓣膜。该团队表示,在未来,医生有可能使用他们的新程序,首先打印出病人的心脏和主动脉,然后将各种瓣膜植入打印的模型中,以观察哪种设计对该特定病人的功能和适应性最好。研究实验室和医疗设备行业也可以使用这些心脏复制品,作为测试各种类型心脏病疗法的现实平台。"所有的心脏都是不同的,"麻省理工学院-哈佛大学健康科学与技术项目的研究生LucaRosalia说。"它们有大量的变化,特别是当病人生病的时候。我们系统的优势在于,我们不仅可以重现病人的心脏形态,还可以重现其在生理和疾病方面的功能。"在这项新的研究中,该团队利用3D打印技术来生产实际病人的心脏的定制复制品。他们使用了一种基于聚合物的墨水,一旦打印和固化,就可以挤压和拉伸,类似于真正跳动的心脏。作为他们的原始材料,研究人员使用了15名被诊断为主动脉瓣狭窄的患者的医疗扫描。研究小组将每个病人的图像转换成病人的左心室(心脏的主要泵房)和主动脉的三维计算机模型。他们将这个模型输入3D打印机,以生成一个柔软的、解剖学上准确的心室和血管外壳。该团队还制作了袖子来包裹打印出来的模型。他们对每个套筒的口袋进行了定制,当包裹在各自的模型上并与一个小型空气泵系统相连时,套筒可以分别进行调整,以真实地收缩和紧缩打印的模型。研究人员表明,对于每个心脏模型,他们可以准确地重现之前在每个病人身上测量的相同的心脏泵送压力和流量。更进一步,该团队旨在复制少数患者所接受的一些干预措施,以观察打印的心脏和血管是否以同样的方式作出反应。一些患者已经接受了旨在拓宽主动脉的瓣膜植入。罗切和她的同事在以每个病人为模型的打印主动脉中植入了类似的阀门。当他们激活打印的心脏进行泵送时,他们观察到植入的瓣膜产生了类似于实际患者手术植入后的流量改善。最后,该团队使用了一个激活的打印心脏来比较不同尺寸的植入物,看看哪一个会产生最佳的配合和流量--他们设想临床医生将来有可能为他们的病人做这些事情。最终,病人特定的复制品可以帮助开发和确定具有独特和挑战性的心脏几何结构的个人的理想治疗方法。为大范围的解剖结构进行设计,并在此范围内测试干预措施,可能会增加微创手术的目标人群。罗萨利娅和他的同事在今天发表在《科学机器人》上的一项研究中报告了他们的成果。麻省理工学院的共同作者包括CaglarOzturk、DebkalpaGoswami、JeanBonnemain、SophieWang和EllenRoche,还有麻省总医院的BenjaminBonner、哈佛大学的JamesWeaver,以及俄亥俄州克利夫兰诊所的ChristopherNguyen、RishiPuri和SamirKapadia。...PC版:https://www.cnbeta.com.tw/articles/soft/1346721.htm手机版:https://m.cnbeta.com.tw/view/1346721.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人